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Abstract

This paper presents a novel representation for dynamicescesmposed of multiple rigid objects
that may undergo different motions and are observed by a mgovamera. Multi-view constraints
associated with groups of affine—covariant scene patchiea anrmalized description of their appearance
are used to segment a scene into its rigid components, aohstmree—dimensional models of these
components, and match instances of models recovered frifenetit image sequences. The proposed
approach has been implemented, and it is applied to thetaeteand matching of moving objects in
video sequences and to shot matching, i.e., the identiicaif shots that depict the same scene in a

video clip.

. INTRODUCTION

The explosion in both the richness and quantity of digitdea content available to the average
consumer creates a need for indexing and retrieval toolff¢otirely manage the large volume
of data and efficiently access specific frames, scenes, rasléts. Most existing video search
tools [8], [11], [24], [58] rely on the appearance and twadnsional (2D) geometric attributes
of individual frames in the sequence, and they do not takearstdge of the stronger three-
dimensional (3D) constraints associated with multiplenea. In this presentation, we propose a
richer representation of video content for modeling andeedl tasks that is based on explicitly
recovering the 3D structure of a scene using structure fratiam (SFM) constraints.

Following our earlier work on modeling and recognition @ttt objects from photographs [45],
we propose to represent 3D structure using a collection ddllsplanar patches, combined
with a description of their local appearance. This approauifies recent work on local image
description using affine-covariant regions [26], [36], J[35tructure from motion [12], [23], [54],
and shape from texture [18], [32]. It is based on the follaykey observation: Although smooth
surfaces are almost never planar on a global scale, theyhaegysaplanar in the small—that
is, sufficiently small surface patches can always be thooglats being comprised of coplanar
points. The surface of a solid can thus be represented bylectoh of small planar patches,
their local appearance, and a description of their 3D spedlationship expressed in terms of
multi-view constraints.

In principle, our patch-based 3D object representatiorbeamaturally extended from modeling

static objects captured in a few photographs to modelingadhya scenes captured in video
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sequences. In practice, though, this extension is quitdecizgng because it requires several
significant modifications of the existing approach. Firsir previous work [45] has assumed
a simplified affine projection model, which cannot handle fignificant perspective effects
contained in many scenes from films or commercial video — f@egxample, the street scene
from the movieRun Lola Run(Fig. 6). In the present contribution, we address this idsye

introducing a novel projection model for surface patchest #iccounts for perspective effects
between different patches, but uses an affine model withth eadividual patch. Second, video
clips almost always contain multiple objects moving indegently from each other and from
the camera. We address this complication by developing &adefior segmenting all tracked
features into groups that move together rigidly and disogrthe features that do not fall into
any rigid group. Notice that this is fundamentallyigid modeling framework, and therefore it
cannot represent certain kinds of video content, such asrfaging people or animals.

Our approach to constructing 3D representations of vidgs elxtracts affine-covariant patches,
tracks them through the image sequence, and then simultsiyesegments the tracks and builds
3D models of each rigid component present in the scene. Tudtireg 3D models represent the
structural content of the scene, and they can be comparecthatahed using techniques similar
to those in [45]. This is useful foshot matchingi.e., recognizing shots of the same scene [1],
[2], [4], [46], [51], [61] — a fundamental task in video retxial.

The rest of the article is organized as follows. Section marizes related work in video
analysis and SFM. Section Il describes our approach tditmgcaffine-covariant patches in
image sequences, identifying subsets of tracks that mayidlyitogether, and building 3D
models of the resulting rigid components. Section IV depgla method for matching 3D models
constructed from different shots. Sections IlI-F and IV4&gent experimental results on several
videos, including shots from the filnRBun Lola Rurand Groundhog Day Section V concludes
with a discussion of the promise and limitations of the psmgEbapproach, together with plans
for future work.

A preliminary version of this article has appeared in [44].

[I. BACKGROUND

As stated in the Introduction, the main target applicationthe approach presented in this

article is video indexing and retrieval. Unlike most existivideo retrieval methods, which only
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deal with 2D image motion, our matching method takes fullaadage of strong 3D geometric
constraints. In this section, we briefly look at work in thee® analysis community (Section II-
A), and then discuss relevant techniques for 3D object miaglétom video sequences (Section

[I-B) and motion segmentation (Section II-C).

A. Video Analysis and Shot Matching

Video indexing systems, such as [8], [11], [24], [58], arelagous to image retrieval sys-
tems [7], [17], [30], [34], [47]. They typically treat “shgitas atomic units, where a shot is defined
as “one or more frames generated and recorded contiguouslyrepresenting a continuous
action in time and space” [10]. Automatically finding shoubdaries in video is a fairly mature
research topic [25], [38], so for the sake of this article, agsume that a shot segmentation is
given as part of the input. In principle, though, we can alstedt shot boundaries using the
tracking technique presented in Section IlI-A.

One approach to video matching is to compare individual feegés from the two shots [15],
[46], [51], [52]. For example, Sivic and Zisserman [51] camiideas from wide-baseline stereo
and text retrieval in a system they dub “Video Google.” Theads to extract a vocabulary of
“visual words” via vector quantization of appearance-dagescriptors and to treat keyframes as
documents containing instances of these “words.” Retriefsaimilar shots in this framework is
accomplished by analogy with text document retrieval: R matches are first identified by
comparing frequency counts of visual words, and are theamamked using loose 2D geometric
consistency constraints. An alternative to considerimividual keyframes separately is to form
a mosaic from the keyframes in the shot and then to match theaio® [1], [11], [17]. A
significant shortcoming of all these methods is that they @alnsider the 2D motion of image
regions, and do not take advantage of the strong geometnistreants that can be derived for
rigid bodies observed from multiple viewpoints. In Sectldh we will propose a fundamentally
different approach to shot matching, which works by formaigymodels from the two shots and
comparing these reconstructions, while taking into actduh appearance and 3D geometric

information.
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B. 3D Modeling from Image Sequences

Traditionally, 3D modeling from image sequences has begmoaghed by applying SFM
techniques to groups of point and/or line features matcledsa several images. Here we
discuss a few examples from the extensive literature in #nea. Tomasi and Kanade [54]
observe that under an affine projection model the cameraredesas and 3D points can be
computed by assembling 2D image measurements irttata matrixand factoring that matrix
via Singular Value Decomposition (SVD). The practical aqgdbility of this method is limited by
its assumption that the data matrix is dense, i.e., thayeteface point appears in (almost) every
image. Zisserman et al. [14], [62] propose to reconstruaticsBD scenes from video sequences
by finding Harris points and lines and matching them betweamés. Pollefeys et al. [40], [41]
focus on the problem of metric reconstructions of 3D scefibgy demonstrate that, with the
help of a few reasonable assumptions, such as roughly kigothinimage center, it is possible
to go from projective to metric calibration without exptidinowledge of all intrinsic camera
parameters. Nistér [39] presents a complete system fosed@D reconstruction from video
sequences and also offers a robust metric upgrade methath \places practical constraints on
the arrangement of camera positions.

Our own approach to 3D reconstruction from video sequeneparts from the above methods
in two respects: First, we use affine-covariant featuregeats of points or line segments, and
second, we introduce in Section IlI-C a locally affine/gliyparojective camera model specially
adapted to the unique characteristics of these featureallyiit must be noted that all of the
SFM methods listed in this section are limited to modelingtistscenes or individual rigid
components. When the image sequence contains multipletehjeoving independently, it is

necessary to segment the image measurements into rigigpggras discussed next.

C. Motion Segmentation

Several existing algorithms for motion segmentation relhatiine SFM constraints to find rigid
components (that is, groups of rigidly moving points) in geasequences. Given a dense data
matrix, these algorithms address two key problems: detengithe number of rigid components
represented in the data matrix, and assigning each 3D pwione of those components. Boult

and Brown [6] observe that the rank of the data matrix shoplat@imately equal the rank of
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the data in a single rigid component times the number of corapts, and propose an algorithm
to segment out the components using approximate rank assastamcy measure. Costeira and
Kanade [9] propose a more direct numerical approach to @xicathe components based on
SVD of the data matrix. Gear [19] proposes an alternative enical approach that involves
reducing the data matrix to a modified echelon form and tngagiach quadruple of rows as a
component. Other ways of applying the rank constraint mhelthe affine-subspace method [50],
[60], which uses the observation that the projected poifitaroobject can be described by
three basis points in each image and a 3D coordinate veataakch point on the object, and
Generalized Principal Component Analysis (GPCA) [59],athtasts the problem of determining
the number of subspaces and the basis for each subspacensdépolynomial factorization.
Movie shots are particularly challenging for affine moti@ysentation methods since they often
contain degenerate structure or motion (e.g., planar s¢ceaeneras rotating in place, or cameras
moving along a straight line). In addition, some scenes naaain significant global perspective
effects, limiting the applicability of affine techniques.

Projective approaches avoid the latter problem, but alevsinerable to degeneracies. The
methodology used in this paper is related to the robust a@gprdo recursive segmentation
proposed by Torr [55] (see also Fitzgibbon and Zissermahffirt@elated work). The procedure
iterates between two key steps: (1) Use Random Sample Caus€RANSAC) [13] to select
the dominant motion, and (2) subtract all data in the dontimaation, leaving only points
that potentially belong to other rigid components. The pthaoe repeats until the number of
remaining points is too small to reliably estimate a new congmnt.

Finally, Sivic et al. [50] take an approach to describing \ehshots that is similar to the one
proposed in this article, in that they track affine-covaripatches across an image sequence
and segment them into motion groups. A combination of sévecal motion constraints and
an affine-subspace model produce a motion segmentatiomdotracks that can handle small
amounts of non-rigidity in the objects. However, unlike inroown work, no explicit 3D
representation of the objects is formed, and shot matchitigralies on the Video Google

retrieval engine [51], and thus incorporates only weak 2Dst@ints.
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[1l. M ODELING

This section introduces our method for creating 3D modelsigili components in video
sequences. Our object representation, originally prapasg45], combines a normalized de-
scription of local surface appearance in terms of affineagant patches [26], [36], [37] with
the global 3D multi-view constraints studied in the SFMrhteire [12], [23], [54]. Section 11I-A
describes the 2D geometric structure of affine-covariatth@s and outlines the procedure for
tracking them in video sequences. Section IlI-B reviews3Bestructure and motion constraints
associated with these patches under an affine projectiorelmadhich were first introduced
in [45]. Next, Section IlI-C introduces a novelcally affinemodel of the image formation process
capable of handling largglobal perspective distortions. Section IlI-D describes a pracedor
estimating patch parameters and camera matrices fromespaegje data (i.e., not all patches
are visible by all cameras). Finally, Section llI-E intra&s our method for simultaneously iden-
tifying and modeling sets of tracks that move rigidly togetim the video sequence. Examples

of 3D models obtained using the proposed approach appeacitos IlI-F.

A. Affine-Covariant Patches

Operators capable of finding affine-covariant image reg[8h935], [43], [57] in the neigh-
borhood of salient image locations (“interest points” [R2Plve recently been proposed in
the context of wide-baseline stereo matching and imagévetr Our implementation uses a
combination of “corner-like” Harris-affine regions [35] driblob-like” Hessian regions [26]
(see [45] for details), and determines for each one its steqade and orientation. Each region
has the form of a parallelogram, and is assigned an affiogfying transformatioriR mapping
it onto a square with unit edge half-length centered at thegiror(Fig. 1). The square patch
is a normalizedrepresentation of the local surface appearance that isiamaunder planar
affine transformations. Such transformations are indugearbitrary changes in viewpoint under
the affine (orthographic, weak-perspective, or para-@etsge) projection model as well as the
locally affine model introduced in Section 1lI-C.

The rectifying transformatiomrR associated with a planar patch and its invefsean be
represented by tw@ x 3 matrices that map homogeneous (affine) plane coordinatesnmm-

homogeneous ones. L&t v, andc denote the column vectors of the mat$x These vectors
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Fig. 1. Left: Geometric interpretation of the rectification matfixand its inverseS. Right: A rectified patch and
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its associated parallelogram in the original image.

admit a simple geometric interpretation [45]: the thirdwuoh c is the coordinate vector of the
patch center, and its first two column& andwv are respectively the coordinate vectors of the
“horizontal” and “vertical” vectors joining: to the sides of the patch (Fig. 1).

Suppose there ane 3D surface patches observed in a continuous sequenceimiages (i.e.,
the shot being modeled). The mati$; denotes the measurement of surface patghnojected
into framei. The image measurements associated withyth@atch tracked through a continuous
sequence of frames are collectively callettack (Fig. 2). Tracks are found using the Kanade-
Lucas-Tomasi (KLT) tracker [29], [49], [53]. Given two imeg of an object separated by a small
viewpoint change, and given a point in one image, KLT findsrnitgch in the other image. KLT
iteratively searches for the location by minimizing thegdidifferences between fixed windows
around the point in the “old” image and the point in the “newfage. To track affine-covariant
patches instead of points, we use a modified version of thenf8éld KLT implementation [51.
For each new frame, we first propagate all the patches that are currently beicked (i.e.,
patches that exist in frame— 1). Specifically, we use the KLT tracker to update the locatbn
the patch center in framg and then use non-linear least squares to refine the pananoétine
patch, maximizing the normalized correlation between tatelpin framei and the same patch
in the frame where it first appeared. This is more robust assl iegone to drift than registering
the patch to its counterpart in frame— 1. For more details about the nonlinear refinement
process, see [45]. After updating the existing patches, ex¢ process the frame with the affine-

covariant region detector to identify any new regions thatraot currently being tracked and to

Aafter the completion of our work, a newer version of the Bfield implementation has appeared, and it includes the

functionality for tracking affine patches directly.
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Fig. 2. A tracked patch. Top row: the patch marked in the originakeidMiddle row: the patch stabilized such
that it maintains a constant shape and the surrounding idefperms. Bottom row: the rectified patch. This figure

shows every 30th frame.

initialize their matricesS;;. To decide when to stop tracking a patch, in addition to thierma
used by the KLT itself, we also check whether the ratio of theeshsions of the patch exceed
some threshold (typically 6), and whether the correlatiath whe initial patch falls below some
threshold (typically 0.8). After finding all the tracks inighfashion, we make a second pass to
terminate them at the point where the correlation falls Wwedostricter threshold (typically 0.9).
This two-pass approach allows us to minimize the numberaaks created for the same surface
feature. Note that it is possible for a patch to disappearraagpear in the sequence, such as
when an object passes temporarily behind another objectr&sée such a case as two different
tracks, though they can in principle be unified by a “trackaigpprocedure [50]. Overall, it
takes an average of 30 secohtis process one frame of video at resolution7af x 480, and

the number of regions tracked in each frame is on the orde000.1

B. Affine Projection Constraints

For now, let us assume that all patches are visible in all @aagnd that the scene is static,
i.e., it contains a single rigid component. The first assuompivill be relaxed in Section 11I-D,

and the second one in Section IlI-E.

2All running times in this paper are reported for a 3GHz PC wli@B of RAM.
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Under an affine camera model, the matsix records the projection of a parallelogram drawn
on the surface into the corresponding image. Thus it can lteewmsS,;; = M, N, where M;

is the projection matrix associated with image numband

N = H, vV, C,
0 0 1

gives the position and shape of pattlon the surface of the object. The vectdis;, V;, and

C; are the 3D analogs dt;, v;, andc; and have a similar interpretation. We follow Tomasi

and Kanade [54] and pick the center of mass of the observethgsitcenters as the origin of

the world coordinate system, and the center of mass of thaiséspprojections as the origin of

every image coordinate system. In this case, the projectiatrices reduce todM; = [Ai 0},

where 4; is a2 x 3 matrix, and
Sij = AZ‘BJ', Wherij = [H] Vj Cj] (l)

It follows that the reduce@m x 3n matrix

S ... S A,
S=AB whereS ™ |+ - i | AY| | B¥ [ Bl @
Smi - Sum A
has at most rank 3. Singular value decomposition can be us@d Bomasi and Kanade [54]
to factorizeS and compute estimates of the matricdsand 5 that minimize the Frobenius
norm of the matrixS — AB. The residual (normalized) Frobenius fot— AB|/v/3mn of this
matrix can be interpreted geometrically as the root-mepraied distance (in pixels) between

the predicted and observed valuescf, h;;, andv;;.

C. Locally Affine Projection Constraints

The affine projection model described in the previous saeci®too restrictive for many
real-world video sequences, since it assumes thaiaimal perspective effects are present in the
scene. In this section, we develop an improved projectiodehlbased on the much more realistic
assumption that the relief of each patch is small compardtemverall depth of the scene. In
other words, we assume that perspective effects are ifisgmi within each individual patch,

though they may be apparent in the image as a whole. Undeapipisoximation, the corners
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of each patch obey cal affine projection model, while their centers obeglabal projective
model. As explained next, the local affine model is obtaingdlibearizing the perspective
projection equations in the neighborhood of a given pataftere Consider the homogeneous

projection equation

1 P A b
Pl _ -M ., where M =
1 z 1 al 1

is the perspective projection matrix is a2 x 3 sub-matrix of M, p is the non-homogeneous
coordinate vector for the point in the image, aRdis the non-homogeneous coordinate vector

of the point in 3D. We can write the perspective projectiorppiag as

1
p=f(P)=——(AP+b),
as - P + 1
and a first order Taylor expansion of the functignin P yieldsp + dp = f(P + 6P) =
f(P)+ f'(P)oP, or
op = f(P)oP
A(as - P+ 1) — (AP + b)al
(as )~ ( Jas 5P
(a3 - P+ 1)2 (3)

1
— (A pal)sP.
as - P + 1

Applying this model to a (small) affine patch and its projeotyields

h = f(C)H,
v = f(C)V, 4)
c = f(C).

Our objective is to use these equations to find the set of @araed patch matrices that
minimize the reprojection error with respect to the imageasmeements. The corresponding
constraints are not linear, but they can be arranged as tmplementary sets of linear equations
and solved using a technique callbidinear refinemen{31], which works by holding one set
of parameters fixed while estimating the others using lineast squares. By alternating sets of
parameters, it is able to update the estimates for all of tbage per iteration and eventually
converge to a local minimum [31], [56]. Bilinear refinemertuires an initial estimate of the

patch parameters, which we find by affine factorization asriesd in Section IlI-B.
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Let us derive the linear equations for the cameras in terniiofvn 3D patches, and for the

3D patches in terms of known cameras. Expanding Eq. (4) yield
(az-C +1) [h 'v} = (A—cal) [H V}, (5)

and
claz-C+1)=AC+b, or c=(A—cal)C+b. (6)

Given a fixed projection matrix\, putting Egs. (5) and (6) together now yields a system of

6 linear equations in the 9 unknown coordinatestbf V', andC:.

A —cal 0"| —hal | |H h 0
0" | A—cal| -—wal | |V|=|v|—-]0 (7)
o’ 0" | A—cal C c b

Given fixed vectordd, V', andC, Egs. (5) and (6) also provide a system of 6 linear equations

in the 11 unknown entries ofA:

a

H | —hCT — cHT | 0, ' h
a

VI v —evT 0, | | | =[], (8)
as

C —cC” I . c

where(, andZ, are respectively the x 2 zero and identity matricess” and al are the first
two rows of M, and

ct o”
of c”|

vT of

o7 v7T C=

Given that the structure and motion parameters are ambsguputo a projective transfor-
mation, replicating the original nonlinear system (4) facle image measuremetst;, with
it =1,...,mandj = 1,...,n, yields 6mn equations inl1m + 9n — 15 unknowns. These
equations are redundant whenever> 2 image tracks share at least > 3 frames, and it is
possible to judge whether the corresponding patches yigidive together by solving for the
structure and motion parameters and measuring as befonméha-squared distance in pixels

between the predicted and measured values of the vectors;;, andv,;.
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@) (b)

Fig. 3. Adding patches and cameras to an existing model, illugtratderms of the patch-view matrix. Each dot

represents & x 3 matrix of patch measurements in an image, each column epgea track and its associated 3D
patch, and each row represents an image and its associabedacga) The initial dense model, represented by an
enclosing box. (b) A 3D patch supported by seven measuraeniemtdded to the model. (c) A camera supported

by six measurements is added to the model.

D. Handling Missing Data: Incremental Bilinear Refinement

So far, we have assumed that all patches are visible in afldfsa However, this is generally not
the case. Suppose all the patches associated with a siggleobject are collected into a block
matrix S as defined in Eq. (2). Each block; can be treated as a single element eagch-view
matrix, whose columns represent surface patches, and rows reptesemages in which they
appear (see Fig. 3 for a visualization of this matrix). Migsentries in this matrix correspond
to images where a particular surface patch is not seen. itgorl is anincrementalversion
of bilinear refinement that takes a (possibly sparse) pah-matrix as input and outputs a
modelof the scene, i.e., estimates of all camera paramet¢rsand patch parametefs,;.

Algorithm 1 works either with the globally affine projectionodel described in Section I1I-B
or with the hybrid model of Section IlI-C. It needs to be ialized with a model covering a
large, dense subset of the data, and a procedure for findingtable one is described in the
Appendix. Once an initial model is available, it is expandedan iterative fashion by adding
cameras that observe a sufficient number of known 3D patemes3D patches that are seen by
a sufficient number of known cameras. To minimize the amofiiesbmation error introduced,
our implementation requires either a camera or a 3D patcle tsupported by at least six image
measurements. At each iteration, the camera or patch deppby the most measurements is
estimated and added to the model (Fig. 3). A threshold onegpejection error of the estimate
is used to guard against adding outliers. Periodicallyafgerithm performs a few (typically 4)
iterations of bilinear refinement on all data in the model topagate updates from newly added

items to earlier cameras and 3D patches.
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I nput:
¢ Affine or locally affine definitions for the camera and patcluagpns.
e The sparse patch-view matrix containing the image measemes;,.
¢ A seed model consisting of camera matridets and 3D patch matrice; that cover a subset
of the patch-view matrix.
Output: A model covering a maximal subset of the patch-view matrixeig the minimunm
coverage requirements for patches and cameras.
repeat
e For each column of the patch-view matrix that is not yet covered by a known 3ich
B;, count the numbem; of image measurementy; that reside in some row covered by
a known camera.
e Similarly, for each row: that is not yet covered by a known camera, count the number
n; of image measurements covered by some known patch.

e Add to the model the row or column that has the highest numlberovered imags

D

measurements:
if a rowi is chosernthen
— Solve for M; by stacking then; instances of the camera equation associated |with
image measurements covered by known patches.
else
— Solve forB; by stacking then; instances of the patch equation associated with image
measurements covered by known cameras.
end if
¢ Incremental bundle adjustment: Propagate the effectseohéw data into the model by
re-solving for all the known patches and for all the known e&as. Alternate between
cameras and patches several times.

until no column or row remains with sufficient coverage.

Algorithm 1: Incremental Bilinear Refinement.
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A potential difficulty with the incremental bilinear appiais that the point arrangements
or camera motions contained in the overlap with the existmgglel may contain degeneracies.
For example, the new patches indicated by the horizontairb&ig. 3(c) may contain nearly
coplanar points, preventing the reliable estimation ofdhmera matrix associated with that row.
In practice, however, our strategy of adding the camera tohpaith the largest overlap tends
to minimize degeneracies. Finally, let us say a word abonhing time. On average, it takes
approximately 10 minutes to segment a shot and build 3D rsodfehll the components (the
precise timing depends primarily on the number of tracks,ddso on the length of the shot,
which can range from 150 to 600 frames). Including trackitig, total processing time for a

typical shot is approximately 90 minutes.

E. Motion Segmentation

We are finally ready to deal with scenes containing multipldependently moving rigid
objects. This section proposes an approach that takes tageaof multi-view constraints (either
affine or locally affine) to simultaneously identify the satssof tracks that move rigidly together
and build the 3D models of the corresponding componentssiRgslicity, we assume that patches
moving rigidly together do so over all the frames in whichytlze visible.

Algorithm 2 summarizes our method, which is similar in gpioi those proposed in [16], [55].
We first locate the frame in the video that contains the ldrgamber of tracks. This provides
the richest evidence for the dominant motion. At all stagethe processing, tracks must be
seen together in some minimum numbeiof frames (typically,w = 6) in order to give high
confidence that they are rigidly connected. In addition,d@bnsidered consistent, a set of tracks
must yield a 3D model that has a reprojection error below estiolde (typically, e = 1 pixel).
Algorithm 2 selects the dominant motion among the concairaicks using RANSAC, and then
grows the associated rigid component by adding consistankg from anywhere in the shot
until the set of tracks reaches a fixed point—that is, the sébnger changes between iterations,
or it cycles through a finite number of values. If the resgitingid component is sufficiently
large (typically, withv > 25 tracks), then the algorithm adds it to the list of componemtd
deletes it from the set of free tracks. Finally, the algarithepeats from the RANSAC step.
This process stops when it is no longer able to collect a seffily large set of tracks from

somewhere in the shot.
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I nput:
e A set of tracksT'.

e A thresholdw on the minimum number of consecutive frames two overlappiagks must

share.
e A thresholde on reprojection error. This determines if a track is comsiswith a model.
e A thresholdr on the minimum number of tracks in a component.

Output: A set of rigid groups and their associated 3D models.

repeat

¢ Find the framef with the largest number of concurrent tracksZinA track must appear

at least in framesf, f + w) to qualify. Call the set of overlapping tracks.

e Use RANSAC to find the largest subset of tracksCnthat are rigidly consistent: For

each random pair sampled frofh form a 3D model and then select all other tracks f

[Om

O with reprojection error below to form a consensus set. Keep the largest consensus set

and call itC'.
repeat
e Form a model fromC' by using incremental bilinear refinement (Algorithm 1).
e ReplaceC with all tracks in7T" whose reprojection error is below
until C' stops growing.
if C' contains at least tracksthen
e Add C and its model to the output.
o —T\C.
end if

until anotherC' such that/C| > v cannot be formed.

Algorithm 2: Motion Segmentation.
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The algorithm builds a 3D model for each rigid component ef skene as an integral part of
its processing. There is no separate 3D modeling stagematigon segmentation. The resulting
3D model will have either an affine or projective ambiguitgpending on whether the modeling
method was affine or locally affine, respectively. For digptairposes, we perform a metric

upgrade using standard techniques [40], [42], [54].

F Results

In this section, we present selected snapshots of modedsjts. In order to convey a more
complete sense of the processing and output of our propgséehs, we also provide videos on
our web siteht t p: / / ww\«+ cvr . ai . ui uc. edu/ ponce_gr p/ resear ch/ 3d.

Figure 4 shows the results of a laboratory experiment usidgos of stuffed animals, pro-
cessed with the affine projection model. The first row showsgmentation experiment where
the head of a bear is moved by hand independently from its.bbldy head is found as one
segment, and the body as another. The second row of Fig. 4ssh@ggmentation experiment
using the bear and a dog rotating independently, but withlainspeeds and axes of rotation.
The bear is found as one component, and the dog is broken apmmntcomponents, the break
occurring as the viewpoint moves from one side of the reddyfiflat object to the other. Fig. 5
shows results of segmenting and modeling shots from thees®&un Lola Rurand Groundhog
Day, processed using the locally-affine projection model. Tist fow shows a scene froRun
Lola Runwhere a train passes overhead. The detected componentseatbet train and the
background (Lola herself is omitted because she is nod)igihe second row shows a corner
scene from the same movie. The two rigid components are thenththe background. Finally,
the third row shows a scene fro@roundhog Day The rigid components are the van and the
background. Later in that shot, another vehicle turns off highway and is also found as a
component.

Our motion segmentation algorithm uses conservative tiotds for determining whether
tracks are rigidly connected (i.e., the tracks must be segether for a fairly long time and with
a low reprojection error). This helps to remove outliers anldieve accurate reconstructions even
in difficult shots, but also tends to over-segment objectesehtracks have insufficient overlap
because of rapid camera or object motion. One example obéfavior is the over-segmentation

of the dog from the the bear-dog video of Fig. 4, as discusbedea Another example is the

DRAFT



18

Fig. 4. Segmentation and modeling of two lab videos. Top row: thedlefathe bear moves independently from
its body. Second row: the bear and the dog are rotating intkp#ly. Left: representative frames from each video.
Middle: patches detected in the corresponding frames -@aded by their motion component. Right: reprojections

of the estimated models for each component, surroundeddmk ffames. Bottom: bear model constructed from
the bear-dog video, along with the recovered cameras.
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Fig. 5. Segmentation and modeling of shots from movies. Top rovin saene fromRun Lola Run Second row:
corner scene fronRun Lola Run Third row: van scene fronGroundhog Day The display format of the shots
is analogous to that of Fig. 4. Bottom: reprojection of the Bibdel of the van. Note that the viewpoint of the

reprojection is significantly different than any in the anigl scene.
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corner shot fromRun Lola Run(Fig. 5), which contains a rapid camera pan that causes most
of the scene patches to traverse the entire length of theenmathe number of frames that is
close to the overlap threshold. In addition, all those padciiso fall on a nearly planar surface,
making it very difficult to obtain an accurate model. Thust method breaks the background
of this shot into several components. It must be noted, heweliat over-segmenting a scene
typically does not pose a problem for the shot matching tdgaissed in the next section, since
the 3D models can be matched independently. Finally, becawsmethod places a conservative
threshold on the minimum number of tracks in a componengnits to eliminate small objects
with only a few tracked patches. For example, cars moving@la road in the distance may

receive only five to ten patches, and thus fall below our tgipibreshold.

IV. RECOGNITION

Our goal in this section is to demonstrate the ability to meashe similarity between shots
by comparing 3D models of their rigid components. This &pitiould serve as a basis for a
video retrieval system, which can search for shots contgiai “query” object or scene, or for
a clustering system, which can automatically extract dbjaad locations that occur repeatedly
in the input footage.

For the purposes of our recognition experiments, it is uUsefuhave video with multiple
repetitions of a similar scene. The moRein Lola Rurcontains three repetitions of roughly the
same plot sequence, with slight variations (Fig. 6). Fos thovie, we use the shot segmentation
provided by the VIBES project [58]. Another film with a suitalmarrative structure i&roundhog
Day. We determined the shots f@roundhog Dayby hand, with some help from Josef Sivic.

As stated above, our approach to shot matching is to form 3@etsoof both shots and
compare the models directly in 3D. An advantage of this agguioover frame-to-frame com-
parison in 2D is that the representations to be compared 3ie models) are very compact. In
our system, most of the computation takes place during theelimgy stage, and the comparison
stage is relatively rapid. Furthermore, using 3D modelsriatching allows us to take advantage
of the strongest possible geometric constraints on thetsiiel and motion in the shot.

We formulate shot matching as the following recognitionijdeon: Given a “query” in the
form of a single rigid 3D model, return all shots from a datbthat contain a closely matching

component. In our prototype implementation, the systempaoes the query object to each
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Fig. 6. Frames from two different scenes Run Lola RunEach scene appears three times in the movie.

component in the database, though it would be straightiahi@aspeed up the process by incor-
porating efficient indexing techniques. Algorithm 3 givée tprocedure for matching between
the query model and a given component, called the “test madehe sequel. The matching
procedure, whose implementation is described in detaihan following section, once again
builds on ideas of RANSAC to seek a maximal set of consisteatches between two sets of

surface patches.

A. Matching Procedure
Step 1 of Algorithm 3 reduces the practical cost of the setimddugh the space of all possible

matches by focusing on the matches that have high appeasanitarity, and are therefore more
likely to be correct. We describe the appearance of surfatehps using color histograms and
SIFT descriptors [27]. As explained next, color acts as atialrfilter on potential matches,
giving greater confidence to the monochrome similarity meas by SIFT.

We work with the YUV color space, where intensity is orthogbto chroma. We retain only
the chroma component, i.e., the U and V values, and bulldg>a10 two-dimensional histogram.

Two color histograms: and g are compared with thg? distance, defined as

(hi — g:)°
XQ(hv g) = Z D
i hitg
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Input: Two sets of patchesl and B.
Output: A setC' C A x B of consistent matches.

Step 1: Appearance-based selection of potential matches.
e Initialize the set of matched/ by finding patch pairs fromd x B with high appearance
similarity.
Step 2: Robust estimation.
e Apply robust estimation to find a sét C M of geometrically consistent matches.
Step 3: Geometry-based addition of matches.
repeat
repeat
e Estimate a registering transformatighusing C'.
e ReplaceC with all matches inM that are consistent witk.
until C' stops changing.
e Re-estimateQ using C.
e Add more putative matches t&/ using Q as a guide. New matches must also satisfy

relaxed appearance constraints.

until M stops changing.

Algorithm 3: Matching (see section IV-A for details).

whereh; andg; are corresponding bins in the two histograms, aimérates over the bins. The
resulting value is in the0, 2] range, with 0 being a perfect match and 2 a complete mismatch.
All matches yielding a score above a threshold)df are rejected, and all remaining matches
go through another round of selection based on their SIFTrisrs.

The SIFT descriptor [27] of a normalized (square) patch ist&sof gradient orientation
histograms computed at each location oft & 4 grid (Fig. 7). The gradient directions are
guantized into eight bins, resulting in 128-dimensionaldiee vectors. These vectors are scaled
to unit norm and compared using the Euclidean distance, wmislting values in the range
[0,+/2]. For a given patch in the query model, we then select the sldsepatches in the
test model that have also passed the color histogram testvdlae of K is chosen adaptively
(see [45]), and is typically to 10 in the implementation.
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Fig. 7. Two (rectified) matching patches found in two images of tharpalong with the corresponding SIFT

and color descriptors. The values of the eight orientatimis bssociated with each spatial bin are depicted by the
lengths of lines radiating from the center of that spatial. litach color histogram appears as a grid of colored
blocks, where the brightness of a block indicates the weaghthat color. If a bin has zero weight, it appears as

50% gray for the sake of readability.

Step 2 of Algorithm 3 uses RANSAC to find a geometrically cetesit subset among the
most promising match hypotheses. Our assumption is thalatigest such consistent set will
contain mostly true matches. The geometric consistency ocaralidate setr is judged by
measuring the error of the registering transformat@ietween the two sets of patches it puts
in correspondence. Le? = [H V C] and’P' = [H' V' C'] be a corresponding pair of 3D
patches inC' (specifically,” belongs to the query model afil belongs to the test model). The
error between the two registered patches is measured as/$oll

dist (P, Py = — P~ QP .
det ((H V|T[H V))"/*
The denominator of this expression is the characteristtesof the query patch in 3D. Empir-

ically, patches of larger scale have less certain locatimattnd so should have a more relaxed
distance measure. The overall error associated with thdidaiie setC' is defined by the root

mean squared distance between the respective patches riegibered models:

error(C) = \/|—é| Z dist (P, P’)*.
(

P,PHeC
In principle, the most general form of the registering tfan®ation for our models is projec-

tive. However, our tests have shown that an affine registrgirovides better results, even when
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one or both models were originally computed using the lgcaffine camera model, and thus
contain an intrinsic projective ambiguity. Affine regidtom is more robust against noise due
to differences in the recovered patches between the two Isyagled against degeneracies (e.qg.,
coplanar points). Lowe [28] makes a similar observationhie tontext of aligning 2D models.
To achieve even greater robustness, we reject matchingthgges that grossly distort models
in order to register them. Distortion is measured by chegkie condition number and skew of
Q.

Step 3 of Algorithm 3 explores the remainder of the searcltespseeking to maximize the
number of geometrically consistent matches between theelmo#laving a larger number of
matches improves the estimate of the registration tramsfbon, and also leads to a higher
confidence score for matching, as explained at the end of#uBon. Enlarging” proceeds by
iterating between two phases. First, we add’t@ll putative matches currently in/ that are
consistent withC'. Second, we enlarg#/ itself by adding pairs of patches that may have been
initially filtered out by the appearance similarity consgita, but that are still consistent with the
established geometric relationship between the two mo&glscifically, we use the registering
transformation between the two models to map the patches fhe test model onto the query
model. We then pair up each patch in the query model with a fimedber of nearest patches
from the test model, and add the resulting pairsifo

Our final measure of matching quality is thepeat rate[48], defined as follows:

Ll
min(|A[, |B|)’
where |C| is the number of trusted matches, aptl and |B| are the numbers of 3D patches
in the respective components. The repeat rate can range@rtonl, where 0 means nothing

matches and 1 means everything matches.

B. Results

We have applied the modeling method described in Sectioto Ithe construction of models
of various shots, and assembled these into a small datéfraseRun Lola Rurwe collected six
scenes, each appearing three times, for a total of 18 shat Groundhog Daywe collected
two shots of the van. We also collected six lab shots covettiegfollowing objects: a stuffed

bear, a stuffed dog, and a cell phone. To demonstrate thatmatrhing procedure can work
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seamlessly with models created from still images, we alstuded a model of the stuffed bear
made from 20 photographs with resoluti®ir2 x 1704. The database contains 27 shots, with a
total of 78 rigid components or models. Figs. 8 and 9 show aptet® gallery of shots in the
database. Next, we selected a set of ten “query” models bgpgadne representative of each
scene or object that appears in the shots. Each query wasdngmared to every model in the
database (excluding models originating from the same shidha query itself), for a total of
754 model-to-model comparisons. The running time of thé$ veas 347 minutes (27.6 seconds
per comparison on average). Finally, ground truth data vsaired by manually identifying all
database models matching each query.

As described in the previous section, the outcome of eactpadson is controlled by setting
a threshold on the repeat rate. The results are shown in Bign the form of a ROC curve
plotting true-positive rate against false-positive rate ¥arious choices of this threshold. The
equal error rate (i.e., the true-positive rate that is eqoane minus the false-positive rate) in
Fig. 10 is approximately 0.833. The corresponding repedat is2).07, indicating the difficulty
of finding exactly the same patch in two different videos obaiect. Like all methods based on
keypoint extraction, ours is limited by the repeatabilifyf@ature detection. Moreover, because
of our strong reliance on 3D geometric constraints, it isongnt that a detector not only finds
features of similar appearance, but also localizes theraratay.

Figure 11 shows four examples of correctly matched modedgther with the repeat rates for
each. Figure 11(a) shows the results of matching a queryrhedel obtained from still images
to a test model derived from the bear-dog video (Fig. 4). &the still images have much higher
resolution and sharpness than the video, the scale of tiebgsin the query model is generally
smaller than that in the test model. This explains the soraéwdw repeat rate of.13 in this
case. Fig. 11(b) shows a match between models of a cell phemed from two lab videos.
Note that the cell phone is a difficult object to model using method, since its reflectance is
highly non-Lambertian and view-dependent. Despite lagggrslarities that make tracking and
matching difficult, our method still finds a relatively higlumber of stable appearance-based
matches (the repeat rate(is32) and a valid geometric correspondence between the two odel
The train scene in Fig. 11(c) is the best-quality match of fthe examples, with the highest

repeat rate 00.52. By contrast, the street scene in Fig. 11(d) is the pooreslity match, owing
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Fig. 8. Gallery of shot models (part 1). Each shot appears as a pamades: The image on the left shows a
frame of the original video, and the image on the right cdasi$é a grayed-out version of the video frame and a

reprojection of the 3D model, with bounding boxes aroundviiddal rigid components.
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Fig. 9. Gallery of shot models (part 2).
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Fig. 10. ROC curve (true positive rate vs. false positive rate) fernatching test consisting of 754 model-to-model

comparisons.

to drastic perspective effects in the video. Several feathiave been matched incorrectly, some

of which can be seen in the right part of the figure. Overakksth four examples provide a

good illustration of the multiple challenges and sourcedlifffculty inherent in the modeling

and matching processes.

V. DISCUSSION

This article has presented a new approach to video modelitiyg am application to shot

matching. We have demonstrated an implemented systemstiogsof multiple components,

including a representation of 3D objects in terms of smadinpl patches tangent to their

surfaces, an algorithm for simultaneously segmentingkédcfeatures and constructing 3D

models of rigid components, and a method for matching suctietsausing both geometry and

appearance. Each component of our implementation has laefully designed to cope with

difficult real-world imaging conditions, and to achieve aper balance between the conflicting

requirements of robustness to outliers and invariancegttfgiant changes in surface appearance.

The experiments presented in this paper, particularly tfes asing the flm&un Lola Rurand

Groundhog Day show the promise of our method to support video indexing m@atdeval. It

is important to emphasize that commercial films are paditylchallenging for SFM methods,

since their shots frequently have very little camera mqtioncamera motion that is nearly
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(a) Repeat Rate = 0.13

(d) Repeat Rate = 0.19

Fig. 11. Four correctly matched shots. Left: original frame of thst tshot. Middle: the query model reprojected
into the test video. Right: the query model matched to therteslel. For ease of visualization, the figure includes

black lines connecting several corresponding patches,idéntified by distinct markers.

degenerate. Empirical observation suggests that in susdsdhe structure of the shot models
output by our system degenerates to planarity, but sincerrdtion about local appearance is
preserved in our patch-based representation, the reguttibdels can still be matched using
the techniques of Section IV. Significant perspective ¢ffesuch as foreshortening, are also
frequently present in film shots, but these can be handledesstully using our novel locally
affine projection model.

Let us close by sketching several directions for improveneérihe current method. First of
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all, the feature extraction and tracking system could beamadre robust by including several
complementary methods for generating affine-covarianthest. Our present implementation
depends in large part on corner-like Harris-affine intepasnts [35], which often fall across
object boundaries, and therefore cannot be tracked stébf/.Hessian regions it uses are less
likely to fall on edges. However, our system would benefitrfrthe inclusion, for instance, of
maximally stable extremal regions [33], which are gengrdéitected on relatively “flat” regions
of an object’s surface. Furthermore, some 3D objects aramenable to representation by planar
patches, for example, lamp posts or wires of a suspensidgédarin such cases, a hybrid system
that models point, edge, and planar features would be matabs To improve computational
efficiency, our proposed modeling and recognition techesqoan be easily integrated with
modern indexing schemes, such as locality sensitive hgdq2i@] and inverted file structures
for document retrieval [51]. Finally, many interesting etls are non-rigid, the prime example
being human actors. Thus, an important future researcletitireis extending our approach to

deal with non-rigid, articulated objects.

APPENDIX: FINDING DENSE BLOCKS

The incremental bilinear refinement algorithm (Sectiorl)Irequires the factorization of one
large dense subset of the patch-view matrix in order toalliue the SFM estimation procedure.
The general problem of finding dense blocks in a matrix is\egdent to finding maximal cliques
in a graph, and is therefore NP-hard. However, since traegksa@ntiguous, the patch-view matrix
is equivalent to annterval graph for which this problem admits a simpler solution [21]. An
interval graph is one in which each vertex represents a gootis range (such as intervals on
the real line) and each edge represents an overlap betweeranhges. In our case, each vertex
corresponds to the unbroken sequence of views in which awnbatch appears, and each
edge corresponds to the sequence of views where two givéacseupatches are both visible.
A clique (that is, a fully connected subset of the vertices)hie graph is equivalent to a dense
block. Maximal cliques in interval graphs can be found inytmgarithmic time, rather than
NP time as required for the general case [21]. Algorithm 4pired by [21], enumerates all
the maximal cliques/blocks with at leadt, views. After choosing the largest dense block, we
factorize it. The resulting model provides a starting pdort incremental bilinear refinement,

which gradually adds all the other tracks to the model.
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I nput:

e For each track, the indices of the first and last views in wihicdppears.
e A lower limit Ny, on the number of views in a blockyy > 2.

e A lower limit Np on the number of tracks in a blocR/p > 2.

Output: A set of dense blocks (each represented as a list of viewgackktat whose intersection
the data is all present).

e Shorten each track by, — 1. That is, for each tracked patch, subtraét — 1 from the
index of its last view. Only retain tracks with positive lehg
for all views V; where some track starts (in increasing orcs)
for all views V; where some track endg,> i do
Let B be the set of tracks that appear in both viégsand V.
if at least one track i starts atV; and at least one track i ends atV; then
Create a block consisting of tracks it and views fromV; to V; inclusive.
end if
end for

end for

e Lengthen each block by, — 1 views.

Algorithm 4. Contiguous Blocks.
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