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Abstract

This paper presents a novel representation for dynamic scenes composed of multiple rigid objects

that may undergo different motions and are observed by a moving camera. Multi–view constraints

associated with groups of affine–covariant scene patches and a normalized description of their appearance

are used to segment a scene into its rigid components, construct three–dimensional models of these

components, and match instances of models recovered from different image sequences. The proposed

approach has been implemented, and it is applied to the detection and matching of moving objects in

video sequences and to shot matching, i.e., the identification of shots that depict the same scene in a

video clip.

I. INTRODUCTION

The explosion in both the richness and quantity of digital video content available to the average

consumer creates a need for indexing and retrieval tools to effectively manage the large volume

of data and efficiently access specific frames, scenes, and/or shots. Most existing video search

tools [8], [11], [24], [58] rely on the appearance and two-dimensional (2D) geometric attributes

of individual frames in the sequence, and they do not take advantage of the stronger three-

dimensional (3D) constraints associated with multiple frames. In this presentation, we propose a

richer representation of video content for modeling and retrieval tasks that is based on explicitly

recovering the 3D structure of a scene using structure from motion (SFM) constraints.

Following our earlier work on modeling and recognition of static objects from photographs [45],

we propose to represent 3D structure using a collection of small planar patches, combined

with a description of their local appearance. This approachunifies recent work on local image

description using affine-covariant regions [26], [36], [37], structure from motion [12], [23], [54],

and shape from texture [18], [32]. It is based on the following key observation: Although smooth

surfaces are almost never planar on a global scale, they are always planar in the small—that

is, sufficiently small surface patches can always be thoughtof as being comprised of coplanar

points. The surface of a solid can thus be represented by a collection of small planar patches,

their local appearance, and a description of their 3D spatial relationship expressed in terms of

multi-view constraints.

In principle, our patch-based 3D object representation canbe naturally extended from modeling

static objects captured in a few photographs to modeling dynamic scenes captured in video
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sequences. In practice, though, this extension is quite challenging because it requires several

significant modifications of the existing approach. First, our previous work [45] has assumed

a simplified affine projection model, which cannot handle thesignificant perspective effects

contained in many scenes from films or commercial video — see,for example, the street scene

from the movieRun Lola Run(Fig. 6). In the present contribution, we address this issueby

introducing a novel projection model for surface patches that accounts for perspective effects

between different patches, but uses an affine model within each individual patch. Second, video

clips almost always contain multiple objects moving independently from each other and from

the camera. We address this complication by developing a method for segmenting all tracked

features into groups that move together rigidly and discarding the features that do not fall into

any rigid group. Notice that this is fundamentally arigid modeling framework, and therefore it

cannot represent certain kinds of video content, such as fast-moving people or animals.

Our approach to constructing 3D representations of video clips extracts affine-covariant patches,

tracks them through the image sequence, and then simultaneously segments the tracks and builds

3D models of each rigid component present in the scene. The resulting 3D models represent the

structural content of the scene, and they can be compared andmatched using techniques similar

to those in [45]. This is useful forshot matching, i.e., recognizing shots of the same scene [1],

[2], [4], [46], [51], [61] — a fundamental task in video retrieval.

The rest of the article is organized as follows. Section II summarizes related work in video

analysis and SFM. Section III describes our approach to tracking affine-covariant patches in

image sequences, identifying subsets of tracks that move rigidly together, and building 3D

models of the resulting rigid components. Section IV develops a method for matching 3D models

constructed from different shots. Sections III-F and IV-B present experimental results on several

videos, including shots from the filmsRun Lola RunandGroundhog Day. Section V concludes

with a discussion of the promise and limitations of the proposed approach, together with plans

for future work.

A preliminary version of this article has appeared in [44].

II. BACKGROUND

As stated in the Introduction, the main target application for the approach presented in this

article is video indexing and retrieval. Unlike most existing video retrieval methods, which only
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deal with 2D image motion, our matching method takes full advantage of strong 3D geometric

constraints. In this section, we briefly look at work in the video analysis community (Section II-

A), and then discuss relevant techniques for 3D object modeling from video sequences (Section

II-B) and motion segmentation (Section II-C).

A. Video Analysis and Shot Matching

Video indexing systems, such as [8], [11], [24], [58], are analogous to image retrieval sys-

tems [7], [17], [30], [34], [47]. They typically treat “shots” as atomic units, where a shot is defined

as “one or more frames generated and recorded contiguously and representing a continuous

action in time and space” [10]. Automatically finding shot boundaries in video is a fairly mature

research topic [25], [38], so for the sake of this article, weassume that a shot segmentation is

given as part of the input. In principle, though, we can also detect shot boundaries using the

tracking technique presented in Section III-A.

One approach to video matching is to compare individual keyframes from the two shots [15],

[46], [51], [52]. For example, Sivic and Zisserman [51] combine ideas from wide-baseline stereo

and text retrieval in a system they dub “Video Google.” The idea is to extract a vocabulary of

“visual words” via vector quantization of appearance-based descriptors and to treat keyframes as

documents containing instances of these “words.” Retrieval of similar shots in this framework is

accomplished by analogy with text document retrieval: Potential matches are first identified by

comparing frequency counts of visual words, and are then re-ranked using loose 2D geometric

consistency constraints. An alternative to considering individual keyframes separately is to form

a mosaic from the keyframes in the shot and then to match the mosaics [1], [11], [17]. A

significant shortcoming of all these methods is that they only consider the 2D motion of image

regions, and do not take advantage of the strong geometric constraints that can be derived for

rigid bodies observed from multiple viewpoints. In SectionIV, we will propose a fundamentally

different approach to shot matching, which works by forming3D models from the two shots and

comparing these reconstructions, while taking into account both appearance and 3D geometric

information.
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B. 3D Modeling from Image Sequences

Traditionally, 3D modeling from image sequences has been approached by applying SFM

techniques to groups of point and/or line features matched across several images. Here we

discuss a few examples from the extensive literature in thisarea. Tomasi and Kanade [54]

observe that under an affine projection model the camera parameters and 3D points can be

computed by assembling 2D image measurements into adata matrixand factoring that matrix

via Singular Value Decomposition (SVD). The practical applicability of this method is limited by

its assumption that the data matrix is dense, i.e., that every surface point appears in (almost) every

image. Zisserman et al. [14], [62] propose to reconstruct static 3D scenes from video sequences

by finding Harris points and lines and matching them between frames. Pollefeys et al. [40], [41]

focus on the problem of metric reconstructions of 3D scenes.They demonstrate that, with the

help of a few reasonable assumptions, such as roughly knowing the image center, it is possible

to go from projective to metric calibration without explicit knowledge of all intrinsic camera

parameters. Nistér [39] presents a complete system for dense 3D reconstruction from video

sequences and also offers a robust metric upgrade method which places practical constraints on

the arrangement of camera positions.

Our own approach to 3D reconstruction from video sequences departs from the above methods

in two respects: First, we use affine-covariant features instead of points or line segments, and

second, we introduce in Section III-C a locally affine/globally projective camera model specially

adapted to the unique characteristics of these features. Finally, it must be noted that all of the

SFM methods listed in this section are limited to modeling static scenes or individual rigid

components. When the image sequence contains multiple objects moving independently, it is

necessary to segment the image measurements into rigid groups, as discussed next.

C. Motion Segmentation

Several existing algorithms for motion segmentation rely on affine SFM constraints to find rigid

components (that is, groups of rigidly moving points) in image sequences. Given a dense data

matrix, these algorithms address two key problems: determining the number of rigid components

represented in the data matrix, and assigning each 3D point to one of those components. Boult

and Brown [6] observe that the rank of the data matrix should approximately equal the rank of
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the data in a single rigid component times the number of components, and propose an algorithm

to segment out the components using approximate rank as a consistency measure. Costeira and

Kanade [9] propose a more direct numerical approach to extracting the components based on

SVD of the data matrix. Gear [19] proposes an alternative numerical approach that involves

reducing the data matrix to a modified echelon form and treating each quadruple of rows as a

component. Other ways of applying the rank constraint include the affine-subspace method [50],

[60], which uses the observation that the projected points of an object can be described by

three basis points in each image and a 3D coordinate vector for each point on the object, and

Generalized Principal Component Analysis (GPCA) [59], which casts the problem of determining

the number of subspaces and the basis for each subspace in terms of polynomial factorization.

Movie shots are particularly challenging for affine motion segmentation methods since they often

contain degenerate structure or motion (e.g., planar scenes, cameras rotating in place, or cameras

moving along a straight line). In addition, some scenes may contain significant global perspective

effects, limiting the applicability of affine techniques.

Projective approaches avoid the latter problem, but are still vulnerable to degeneracies. The

methodology used in this paper is related to the robust approach to recursive segmentation

proposed by Torr [55] (see also Fitzgibbon and Zisserman [16] for related work). The procedure

iterates between two key steps: (1) Use Random Sample Consensus (RANSAC) [13] to select

the dominant motion, and (2) subtract all data in the dominant motion, leaving only points

that potentially belong to other rigid components. The procedure repeats until the number of

remaining points is too small to reliably estimate a new component.

Finally, Sivic et al. [50] take an approach to describing whole shots that is similar to the one

proposed in this article, in that they track affine-covariant patches across an image sequence

and segment them into motion groups. A combination of several local motion constraints and

an affine-subspace model produce a motion segmentation for the tracks that can handle small

amounts of non-rigidity in the objects. However, unlike in our own work, no explicit 3D

representation of the objects is formed, and shot matching still relies on the Video Google

retrieval engine [51], and thus incorporates only weak 2D constraints.
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III. M ODELING

This section introduces our method for creating 3D models ofrigid components in video

sequences. Our object representation, originally proposed in [45], combines a normalized de-

scription of local surface appearance in terms of affine-covariant patches [26], [36], [37] with

the global 3D multi-view constraints studied in the SFM literature [12], [23], [54]. Section III-A

describes the 2D geometric structure of affine-covariant patches and outlines the procedure for

tracking them in video sequences. Section III-B reviews the3D structure and motion constraints

associated with these patches under an affine projection model, which were first introduced

in [45]. Next, Section III-C introduces a novellocally affinemodel of the image formation process

capable of handling largeglobal perspective distortions. Section III-D describes a procedure for

estimating patch parameters and camera matrices from sparse image data (i.e., not all patches

are visible by all cameras). Finally, Section III-E introduces our method for simultaneously iden-

tifying and modeling sets of tracks that move rigidly together in the video sequence. Examples

of 3D models obtained using the proposed approach appear in Section III-F.

A. Affine-Covariant Patches

Operators capable of finding affine-covariant image regions[3], [35], [43], [57] in the neigh-

borhood of salient image locations (“interest points” [22]) have recently been proposed in

the context of wide-baseline stereo matching and image retrieval. Our implementation uses a

combination of “corner-like” Harris-affine regions [35] and “blob-like” Hessian regions [26]

(see [45] for details), and determines for each one its shape, scale and orientation. Each region

has the form of a parallelogram, and is assigned an affinerectifying transformationR mapping

it onto a square with unit edge half-length centered at the origin (Fig. 1). The square patch

is a normalizedrepresentation of the local surface appearance that is invariant under planar

affine transformations. Such transformations are induced by arbitrary changes in viewpoint under

the affine (orthographic, weak-perspective, or para-perspective) projection model as well as the

locally affine model introduced in Section III-C.

The rectifying transformationR associated with a planar patch and its inverseS can be

represented by two2× 3 matrices that map homogeneous (affine) plane coordinates onto non-

homogeneous ones. Leth, v, andc denote the column vectors of the matrixS. These vectors
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Fig. 1. Left: Geometric interpretation of the rectification matrixR and its inverseS. Right: A rectified patch and

its associated parallelogram in the original image.

admit a simple geometric interpretation [45]: the third column c is the coordinate vector of the

patch centerc, and its first two columnsh andv are respectively the coordinate vectors of the

“horizontal” and “vertical” vectors joiningc to the sides of the patch (Fig. 1).

Suppose there aren 3D surface patches observed in a continuous sequence ofm images (i.e.,

the shot being modeled). The matrixSij denotes the measurement of surface patchj projected

into framei. The image measurements associated with thejth patch tracked through a continuous

sequence of frames are collectively called atrack (Fig. 2). Tracks are found using the Kanade-

Lucas-Tomasi (KLT) tracker [29], [49], [53]. Given two images of an object separated by a small

viewpoint change, and given a point in one image, KLT finds itsmatch in the other image. KLT

iteratively searches for the location by minimizing the pixel differences between fixed windows

around the point in the “old” image and the point in the “new” image. To track affine-covariant

patches instead of points, we use a modified version of the Birchfield KLT implementation [5].1

For each new framei, we first propagate all the patches that are currently being tracked (i.e.,

patches that exist in framei− 1). Specifically, we use the KLT tracker to update the locationof

the patch center in framei, and then use non-linear least squares to refine the parameters of the

patch, maximizing the normalized correlation between the patch in framei and the same patch

in the frame where it first appeared. This is more robust and less prone to drift than registering

the patch to its counterpart in framei − 1. For more details about the nonlinear refinement

process, see [45]. After updating the existing patches, we next process the frame with the affine-

covariant region detector to identify any new regions that are not currently being tracked and to

1After the completion of our work, a newer version of the Birchfield implementation has appeared, and it includes the

functionality for tracking affine patches directly.
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Fig. 2. A tracked patch. Top row: the patch marked in the original video. Middle row: the patch stabilized such

that it maintains a constant shape and the surrounding imagedeforms. Bottom row: the rectified patch. This figure

shows every 30th frame.

initialize their matricesSij . To decide when to stop tracking a patch, in addition to the criteria

used by the KLT itself, we also check whether the ratio of the dimensions of the patch exceed

some threshold (typically 6), and whether the correlation with the initial patch falls below some

threshold (typically 0.8). After finding all the tracks in this fashion, we make a second pass to

terminate them at the point where the correlation falls below a stricter threshold (typically 0.9).

This two-pass approach allows us to minimize the number of tracks created for the same surface

feature. Note that it is possible for a patch to disappear andreappear in the sequence, such as

when an object passes temporarily behind another object. Wetreat such a case as two different

tracks, though they can in principle be unified by a “track repair” procedure [50]. Overall, it

takes an average of 30 seconds2 to process one frame of video at resolution of720× 480, and

the number of regions tracked in each frame is on the order of 1000.

B. Affine Projection Constraints

For now, let us assume that all patches are visible in all images, and that the scene is static,

i.e., it contains a single rigid component. The first assumption will be relaxed in Section III-D,

and the second one in Section III-E.

2All running times in this paper are reported for a 3GHz PC with1GB of RAM.
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Under an affine camera model, the matrixSij records the projection of a parallelogram drawn

on the surface into the corresponding image. Thus it can be written asSij =MiNj, whereMi

is the projection matrix associated with image numberi and

Nj =





Hj V j Cj

0 0 1





gives the position and shape of patchj on the surface of the object. The vectorsHj , V j, and

Cj are the 3D analogs ofhj, vj, andcj and have a similar interpretation. We follow Tomasi

and Kanade [54] and pick the center of mass of the observed patches’ centers as the origin of

the world coordinate system, and the center of mass of these points’ projections as the origin of

every image coordinate system. In this case, the projectionmatrices reduce toMi =
[

Ai 0

]

,

whereAi is a 2× 3 matrix, and

Sij = AiBj , whereBj = [Hj V j Cj]. (1)

It follows that the reduced2m× 3n matrix

Ŝ = ÂB̂, whereŜ def
=











S11 . . . S1n

...
. . .

...

Sm1 . . . Smn











, Â def
=











A1

. . .

Am











, B̂ def
=

[

B1 . . . Bn

]

, (2)

has at most rank 3. Singular value decomposition can be used as in Tomasi and Kanade [54]

to factorize Ŝ and compute estimates of the matricesÂ and B̂ that minimize the Frobenius

norm of the matrixŜ − ÂB̂. The residual (normalized) Frobenius form|Ŝ − ÂB̂|/
√

3mn of this

matrix can be interpreted geometrically as the root-mean-squared distance (in pixels) between

the predicted and observed values ofcij, hij, andvij.

C. Locally Affine Projection Constraints

The affine projection model described in the previous section is too restrictive for many

real-world video sequences, since it assumes that noglobal perspective effects are present in the

scene. In this section, we develop an improved projection model based on the much more realistic

assumption that the relief of each patch is small compared tothe overall depth of the scene. In

other words, we assume that perspective effects are insignificant within each individual patch,

though they may be apparent in the image as a whole. Under thisapproximation, the corners
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of each patch obey alocal affine projection model, while their centers obey aglobal projective

model. As explained next, the local affine model is obtained by linearizing the perspective

projection equations in the neighborhood of a given patch center. Consider the homogeneous

projection equation




p

1



 =
1

z
M





P

1



 , where M =





A b

aT
3 1





is the perspective projection matrix,A is a 2× 3 sub-matrix ofM, p is the non-homogeneous

coordinate vector for the point in the image, andP is the non-homogeneous coordinate vector

of the point in 3D. We can write the perspective projection mapping as

p = f(P ) =
1

a3 · P + 1
(AP + b),

and a first order Taylor expansion of the functionf in P yields p + δp = f(P + δP ) =

f(P ) + f ′(P )δP , or

δp = f ′(P )δP

=
A(a3 · P + 1)− (AP + b)aT

3

(a3 · P + 1)2
δP

=
1

a3 ·P + 1
(A− paT

3 )δP .

(3)

Applying this model to a (small) affine patch and its projection yields


















h = f ′(C)H ,

v = f ′(C)V ,

c = f(C).

(4)

Our objective is to use these equations to find the set of camera and patch matrices that

minimize the reprojection error with respect to the image measurements. The corresponding

constraints are not linear, but they can be arranged as two complementary sets of linear equations

and solved using a technique calledbilinear refinement[31], which works by holding one set

of parameters fixed while estimating the others using linearleast squares. By alternating sets of

parameters, it is able to update the estimates for all of themonce per iteration and eventually

converge to a local minimum [31], [56]. Bilinear refinement requires an initial estimate of the

patch parameters, which we find by affine factorization as described in Section III-B.
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Let us derive the linear equations for the cameras in terms ofknown 3D patches, and for the

3D patches in terms of known cameras. Expanding Eq. (4) yields

(a3 ·C + 1)
[

h v

]

= (A− caT
3 )

[

H V

]

, (5)

and

c(a3 ·C + 1) = AC + b, or c = (A− caT
3 )C + b. (6)

Given a fixed projection matrixM, putting Eqs. (5) and (6) together now yields a system of

6 linear equations in the 9 unknown coordinates ofH, V , andC:










A− caT
3 0

T −haT
3

0
T A− caT

3 −vaT
3

0
T

0
T A− caT

3





















H

V

C











=











h

v

c











−











0

0

b











. (7)

Given fixed vectorsH, V , andC, Eqs. (5) and (6) also provide a system of 6 linear equations

in the 11 unknown entries ofM:











H −hCT − cHT 02

V −vCT − cV T 02

C −cCT I2

























a1

a2

a3

b















=











h

v

c











, (8)

where02 andI2 are respectively the2 × 2 zero and identity matrices,aT
1 andaT

2 are the first

two rows ofM, and

H =





HT
0

T

0
T HT





, V =





V T
0

T

0
T V T





, C =





CT
0

T

0
T CT





.

Given that the structure and motion parameters are ambiguous up to a projective transfor-

mation, replicating the original nonlinear system (4) for each image measurementSij , with

i = 1, . . . , m and j = 1, . . . , n, yields 6mn equations in11m + 9n − 15 unknowns. These

equations are redundant whenevern ≥ 2 image tracks share at leastm ≥ 3 frames, and it is

possible to judge whether the corresponding patches rigidly move together by solving for the

structure and motion parameters and measuring as before themean-squared distance in pixels

between the predicted and measured values of the vectorscij , hij, andvij .
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(a) (b) (c)

Fig. 3. Adding patches and cameras to an existing model, illustrated in terms of the patch-view matrix. Each dot

represents a2×3 matrix of patch measurements in an image, each column represents a track and its associated 3D

patch, and each row represents an image and its associated camera. (a) The initial dense model, represented by an

enclosing box. (b) A 3D patch supported by seven measurements is added to the model. (c) A camera supported

by six measurements is added to the model.

D. Handling Missing Data: Incremental Bilinear Refinement

So far, we have assumed that all patches are visible in all frames. However, this is generally not

the case. Suppose all the patches associated with a single rigid object are collected into a block

matrix Ŝ as defined in Eq. (2). Each blockSij can be treated as a single element in apatch-view

matrix, whose columns represent surface patches, and rows represent the images in which they

appear (see Fig. 3 for a visualization of this matrix). Missing entries in this matrix correspond

to images where a particular surface patch is not seen. Algorithm 1 is anincrementalversion

of bilinear refinement that takes a (possibly sparse) patch-view matrix as input and outputs a

modelof the scene, i.e., estimates of all camera parametersMi and patch parametersBj .

Algorithm 1 works either with the globally affine projectionmodel described in Section III-B

or with the hybrid model of Section III-C. It needs to be initialized with a model covering a

large, dense subset of the data, and a procedure for finding a suitable one is described in the

Appendix. Once an initial model is available, it is expandedin an iterative fashion by adding

cameras that observe a sufficient number of known 3D patches,and 3D patches that are seen by

a sufficient number of known cameras. To minimize the amount of estimation error introduced,

our implementation requires either a camera or a 3D patch to be supported by at least six image

measurements. At each iteration, the camera or patch supported by the most measurements is

estimated and added to the model (Fig. 3). A threshold on the reprojection error of the estimate

is used to guard against adding outliers. Periodically, thealgorithm performs a few (typically 4)

iterations of bilinear refinement on all data in the model to propagate updates from newly added

items to earlier cameras and 3D patches.
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Input:

• Affine or locally affine definitions for the camera and patch equations.

• The sparse patch-view matrix containing the image measurementsSij.

• A seed model consisting of camera matricesMi and 3D patch matricesBj that cover a subset

of the patch-view matrix.

Output: A model covering a maximal subset of the patch-view matrix, given the minimum

coverage requirements for patches and cameras.

repeat

• For each columnj of the patch-view matrix that is not yet covered by a known 3D patch

Bj , count the numbermj of image measurementsSij that reside in some row covered by

a known camera.

• Similarly, for each rowi that is not yet covered by a known camera, count the number

ni of image measurements covered by some known patch.

• Add to the model the row or column that has the highest number of covered image

measurements:

if a row i is chosenthen

— Solve forMi by stacking theni instances of the camera equation associated with

image measurements covered by known patches.

else

— Solve forBj by stacking themj instances of the patch equation associated with image

measurements covered by known cameras.

end if

• Incremental bundle adjustment: Propagate the effects of the new data into the model by

re-solving for all the known patches and for all the known cameras. Alternate between

cameras and patches several times.

until no column or row remains with sufficient coverage.

Algorithm 1: Incremental Bilinear Refinement.
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A potential difficulty with the incremental bilinear approach is that the point arrangements

or camera motions contained in the overlap with the existingmodel may contain degeneracies.

For example, the new patches indicated by the horizontal barin Fig. 3(c) may contain nearly

coplanar points, preventing the reliable estimation of thecamera matrix associated with that row.

In practice, however, our strategy of adding the camera or patch with the largest overlap tends

to minimize degeneracies. Finally, let us say a word about running time. On average, it takes

approximately 10 minutes to segment a shot and build 3D models of all the components (the

precise timing depends primarily on the number of tracks, but also on the length of the shot,

which can range from 150 to 600 frames). Including tracking,the total processing time for a

typical shot is approximately 90 minutes.

E. Motion Segmentation

We are finally ready to deal with scenes containing multiple independently moving rigid

objects. This section proposes an approach that takes advantage of multi-view constraints (either

affine or locally affine) to simultaneously identify the subsets of tracks that move rigidly together

and build the 3D models of the corresponding components. Forsimplicity, we assume that patches

moving rigidly together do so over all the frames in which they are visible.

Algorithm 2 summarizes our method, which is similar in spirit to those proposed in [16], [55].

We first locate the frame in the video that contains the largest number of tracks. This provides

the richest evidence for the dominant motion. At all stages of the processing, tracks must be

seen together in some minimum numberω of frames (typically,ω = 6) in order to give high

confidence that they are rigidly connected. In addition, to be considered consistent, a set of tracks

must yield a 3D model that has a reprojection error below a thresholdǫ (typically, ǫ = 1 pixel).

Algorithm 2 selects the dominant motion among the concurrent tracks using RANSAC, and then

grows the associated rigid component by adding consistent tracks from anywhere in the shot

until the set of tracks reaches a fixed point—that is, the set no longer changes between iterations,

or it cycles through a finite number of values. If the resulting rigid component is sufficiently

large (typically, withν ≥ 25 tracks), then the algorithm adds it to the list of componentsand

deletes it from the set of free tracks. Finally, the algorithm repeats from the RANSAC step.

This process stops when it is no longer able to collect a sufficiently large set of tracks from

somewhere in the shot.
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Input:

• A set of tracksT .

• A thresholdω on the minimum number of consecutive frames two overlappingtracks must

share.

• A thresholdǫ on reprojection error. This determines if a track is consistent with a model.

• A thresholdν on the minimum number of tracks in a component.

Output: A set of rigid groups and their associated 3D models.

repeat

• Find the framef with the largest number of concurrent tracks inT . A track must appear

at least in frames[f, f + ω) to qualify. Call the set of overlapping tracksO.

• Use RANSAC to find the largest subset of tracks inO that are rigidly consistent: For

each random pair sampled fromO, form a 3D model and then select all other tracks from

O with reprojection error belowǫ to form a consensus set. Keep the largest consensus set

and call itC.

repeat

• Form a model fromC by using incremental bilinear refinement (Algorithm 1).

• ReplaceC with all tracks inT whose reprojection error is belowǫ.

until C stops growing.

if C contains at leastν tracksthen

• Add C and its model to the output.

• T ← T \ C.

end if

until anotherC such that|C| ≥ ν cannot be formed.

Algorithm 2: Motion Segmentation.
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The algorithm builds a 3D model for each rigid component of the scene as an integral part of

its processing. There is no separate 3D modeling stage aftermotion segmentation. The resulting

3D model will have either an affine or projective ambiguity, depending on whether the modeling

method was affine or locally affine, respectively. For display purposes, we perform a metric

upgrade using standard techniques [40], [42], [54].

F. Results

In this section, we present selected snapshots of modeling results. In order to convey a more

complete sense of the processing and output of our proposed system, we also provide videos on

our web site:http://www-cvr.ai.uiuc.edu/ponce grp/research/3d.

Figure 4 shows the results of a laboratory experiment using videos of stuffed animals, pro-

cessed with the affine projection model. The first row shows a segmentation experiment where

the head of a bear is moved by hand independently from its body. The head is found as one

segment, and the body as another. The second row of Fig. 4 shows a segmentation experiment

using the bear and a dog rotating independently, but with similar speeds and axes of rotation.

The bear is found as one component, and the dog is broken up into two components, the break

occurring as the viewpoint moves from one side of the relatively flat object to the other. Fig. 5

shows results of segmenting and modeling shots from the moviesRun Lola RunandGroundhog

Day, processed using the locally-affine projection model. The first row shows a scene fromRun

Lola Run where a train passes overhead. The detected components are the the train and the

background (Lola herself is omitted because she is non-rigid). The second row shows a corner

scene from the same movie. The two rigid components are the car and the background. Finally,

the third row shows a scene fromGroundhog Day. The rigid components are the van and the

background. Later in that shot, another vehicle turns off the highway and is also found as a

component.

Our motion segmentation algorithm uses conservative thresholds for determining whether

tracks are rigidly connected (i.e., the tracks must be seen together for a fairly long time and with

a low reprojection error). This helps to remove outliers andachieve accurate reconstructions even

in difficult shots, but also tends to over-segment objects whose tracks have insufficient overlap

because of rapid camera or object motion. One example of thisbehavior is the over-segmentation

of the dog from the the bear-dog video of Fig. 4, as discussed above. Another example is the
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Fig. 4. Segmentation and modeling of two lab videos. Top row: the head of the bear moves independently from

its body. Second row: the bear and the dog are rotating independently. Left: representative frames from each video.

Middle: patches detected in the corresponding frames color-coded by their motion component. Right: reprojections

of the estimated models for each component, surrounded by black frames. Bottom: bear model constructed from

the bear-dog video, along with the recovered cameras.
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Fig. 5. Segmentation and modeling of shots from movies. Top row: train scene fromRun Lola Run. Second row:

corner scene fromRun Lola Run. Third row: van scene fromGroundhog Day. The display format of the shots

is analogous to that of Fig. 4. Bottom: reprojection of the 3Dmodel of the van. Note that the viewpoint of the

reprojection is significantly different than any in the original scene.
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corner shot fromRun Lola Run(Fig. 5), which contains a rapid camera pan that causes most

of the scene patches to traverse the entire length of the image in the number of frames that is

close to the overlap threshold. In addition, all those patches also fall on a nearly planar surface,

making it very difficult to obtain an accurate model. Thus, our method breaks the background

of this shot into several components. It must be noted, however, that over-segmenting a scene

typically does not pose a problem for the shot matching tasksdiscussed in the next section, since

the 3D models can be matched independently. Finally, because our method places a conservative

threshold on the minimum number of tracks in a component, it tends to eliminate small objects

with only a few tracked patches. For example, cars moving along a road in the distance may

receive only five to ten patches, and thus fall below our typical threshold.

IV. RECOGNITION

Our goal in this section is to demonstrate the ability to measure the similarity between shots

by comparing 3D models of their rigid components. This ability could serve as a basis for a

video retrieval system, which can search for shots containing a “query” object or scene, or for

a clustering system, which can automatically extract objects and locations that occur repeatedly

in the input footage.

For the purposes of our recognition experiments, it is useful to have video with multiple

repetitions of a similar scene. The movieRun Lola Runcontains three repetitions of roughly the

same plot sequence, with slight variations (Fig. 6). For this movie, we use the shot segmentation

provided by the VIBES project [58]. Another film with a suitable narrative structure isGroundhog

Day. We determined the shots forGroundhog Dayby hand, with some help from Josef Sivic.

As stated above, our approach to shot matching is to form 3D models of both shots and

compare the models directly in 3D. An advantage of this approach over frame-to-frame com-

parison in 2D is that the representations to be compared (i.e., 3D models) are very compact. In

our system, most of the computation takes place during the modeling stage, and the comparison

stage is relatively rapid. Furthermore, using 3D models formatching allows us to take advantage

of the strongest possible geometric constraints on the structure and motion in the shot.

We formulate shot matching as the following recognition problem: Given a “query” in the

form of a single rigid 3D model, return all shots from a database that contain a closely matching

component. In our prototype implementation, the system compares the query object to each
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Fig. 6. Frames from two different scenes inRun Lola Run. Each scene appears three times in the movie.

component in the database, though it would be straightforward to speed up the process by incor-

porating efficient indexing techniques. Algorithm 3 gives the procedure for matching between

the query model and a given component, called the “test model” in the sequel. The matching

procedure, whose implementation is described in detail in the following section, once again

builds on ideas of RANSAC to seek a maximal set of consistent matches between two sets of

surface patches.

A. Matching Procedure

Step 1 of Algorithm 3 reduces the practical cost of the searchthrough the space of all possible

matches by focusing on the matches that have high appearancesimilarity, and are therefore more

likely to be correct. We describe the appearance of surface patches using color histograms and

SIFT descriptors [27]. As explained next, color acts as an initial filter on potential matches,

giving greater confidence to the monochrome similarity measured by SIFT.

We work with the YUV color space, where intensity is orthogonal to chroma. We retain only

the chroma component, i.e., the U and V values, and build a10×10 two-dimensional histogram.

Two color histogramsh andg are compared with theχ2 distance, defined as

χ2(h, g) =
∑

i

(hi − gi)
2

hi + gi

,
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Input: Two sets of patchesA andB.

Output: A set C ⊆ A× B of consistent matches.

Step 1: Appearance-based selection of potential matches.

• Initialize the set of matchesM by finding patch pairs fromA × B with high appearance

similarity.

Step 2: Robust estimation.

• Apply robust estimation to find a setC ⊆M of geometrically consistent matches.

Step 3: Geometry-based addition of matches.

repeat

repeat

• Estimate a registering transformationQ usingC.

• ReplaceC with all matches inM that are consistent withQ.

until C stops changing.

• Re-estimateQ usingC.

• Add more putative matches toM usingQ as a guide. New matches must also satisfy

relaxed appearance constraints.

until M stops changing.

Algorithm 3: Matching (see section IV-A for details).

wherehi andgi are corresponding bins in the two histograms, andi iterates over the bins. The

resulting value is in the[0, 2] range, with 0 being a perfect match and 2 a complete mismatch.

All matches yielding a score above a threshold of0.1 are rejected, and all remaining matches

go through another round of selection based on their SIFT descriptors.

The SIFT descriptor [27] of a normalized (square) patch consists of gradient orientation

histograms computed at each location of a4 × 4 grid (Fig. 7). The gradient directions are

quantized into eight bins, resulting in 128-dimensional feature vectors. These vectors are scaled

to unit norm and compared using the Euclidean distance, withresulting values in the range

[0,
√

2]. For a given patch in the query model, we then select the closest K patches in the

test model that have also passed the color histogram test. The value ofK is chosen adaptively

(see [45]), and is typically5 to 10 in the implementation.
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Fig. 7. Two (rectified) matching patches found in two images of the bear, along with the corresponding SIFT

and color descriptors. The values of the eight orientation bins associated with each spatial bin are depicted by the

lengths of lines radiating from the center of that spatial bin. Each color histogram appears as a grid of colored

blocks, where the brightness of a block indicates the weighton that color. If a bin has zero weight, it appears as

50% gray for the sake of readability.

Step 2 of Algorithm 3 uses RANSAC to find a geometrically consistent subset among the

most promising match hypotheses. Our assumption is that thelargest such consistent set will

contain mostly true matches. The geometric consistency of acandidate setC is judged by

measuring the error of the registering transformationQ between the two sets of patches it puts

in correspondence. LetP = [H V C] andP ′ = [H ′ V ′ C ′] be a corresponding pair of 3D

patches inC (specifically,P belongs to the query model andP ′ belongs to the test model). The

error between the two registered patches is measured as follows:

dist (P,P ′) =
‖P − QP ′‖2

det ([H V ]T [H V ])1/4
.

The denominator of this expression is the characteristic scale of the query patch in 3D. Empir-

ically, patches of larger scale have less certain localization, and so should have a more relaxed

distance measure. The overall error associated with the candidate setC is defined by the root

mean squared distance between the respective patches in theregistered models:

error(C) =

√

1

|C|
∑

(P,P ′)∈C

dist (P,P ′)2 .

In principle, the most general form of the registering transformation for our models is projec-

tive. However, our tests have shown that an affine registration provides better results, even when
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one or both models were originally computed using the locally affine camera model, and thus

contain an intrinsic projective ambiguity. Affine registration is more robust against noise due

to differences in the recovered patches between the two models, and against degeneracies (e.g.,

coplanar points). Lowe [28] makes a similar observation in the context of aligning 2D models.

To achieve even greater robustness, we reject matching hypotheses that grossly distort models

in order to register them. Distortion is measured by checking the condition number and skew of

Q.

Step 3 of Algorithm 3 explores the remainder of the search space, seeking to maximize the

number of geometrically consistent matches between the models. Having a larger number of

matches improves the estimate of the registration transformation, and also leads to a higher

confidence score for matching, as explained at the end of thissection. EnlargingC proceeds by

iterating between two phases. First, we add toC all putative matches currently inM that are

consistent withC. Second, we enlargeM itself by adding pairs of patches that may have been

initially filtered out by the appearance similarity constraints, but that are still consistent with the

established geometric relationship between the two models. Specifically, we use the registering

transformation between the two models to map the patches from the test model onto the query

model. We then pair up each patch in the query model with a fixednumber of nearest patches

from the test model, and add the resulting pairs toM .

Our final measure of matching quality is therepeat rate[48], defined as follows:

r =
|C|

min(|A|, |B|) ,

where |C| is the number of trusted matches, and|A| and |B| are the numbers of 3D patches

in the respective components. The repeat rate can range from0 to 1, where 0 means nothing

matches and 1 means everything matches.

B. Results

We have applied the modeling method described in Section IIIto the construction of models

of various shots, and assembled these into a small database.FromRun Lola Runwe collected six

scenes, each appearing three times, for a total of 18 shots. From Groundhog Daywe collected

two shots of the van. We also collected six lab shots coveringthe following objects: a stuffed

bear, a stuffed dog, and a cell phone. To demonstrate that ourmatching procedure can work
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seamlessly with models created from still images, we also included a model of the stuffed bear

made from 20 photographs with resolution2272× 1704. The database contains 27 shots, with a

total of 78 rigid components or models. Figs. 8 and 9 show a complete gallery of shots in the

database. Next, we selected a set of ten “query” models by taking one representative of each

scene or object that appears in the shots. Each query was thencompared to every model in the

database (excluding models originating from the same shot as the query itself), for a total of

754 model-to-model comparisons. The running time of this test was 347 minutes (27.6 seconds

per comparison on average). Finally, ground truth data was obtained by manually identifying all

database models matching each query.

As described in the previous section, the outcome of each comparison is controlled by setting

a threshold on the repeat rate. The results are shown in Fig. 10 in the form of a ROC curve

plotting true-positive rate against false-positive rate for various choices of this threshold. The

equal error rate (i.e., the true-positive rate that is equalto one minus the false-positive rate) in

Fig. 10 is approximately 0.833. The corresponding repeat rate is 0.07, indicating the difficulty

of finding exactly the same patch in two different videos of anobject. Like all methods based on

keypoint extraction, ours is limited by the repeatability of feature detection. Moreover, because

of our strong reliance on 3D geometric constraints, it is important that a detector not only finds

features of similar appearance, but also localizes them accurately.

Figure 11 shows four examples of correctly matched models, together with the repeat rates for

each. Figure 11(a) shows the results of matching a query bearmodel obtained from still images

to a test model derived from the bear-dog video (Fig. 4). Since the still images have much higher

resolution and sharpness than the video, the scale of the patches in the query model is generally

smaller than that in the test model. This explains the somewhat low repeat rate of0.13 in this

case. Fig. 11(b) shows a match between models of a cell phone derived from two lab videos.

Note that the cell phone is a difficult object to model using our method, since its reflectance is

highly non-Lambertian and view-dependent. Despite large specularities that make tracking and

matching difficult, our method still finds a relatively high number of stable appearance-based

matches (the repeat rate is0.32) and a valid geometric correspondence between the two models.

The train scene in Fig. 11(c) is the best-quality match of thefour examples, with the highest

repeat rate of0.52. By contrast, the street scene in Fig. 11(d) is the poorest-quality match, owing
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Fig. 8. Gallery of shot models (part 1). Each shot appears as a pair ofimages: The image on the left shows a

frame of the original video, and the image on the right consists of a grayed-out version of the video frame and a

reprojection of the 3D model, with bounding boxes around individual rigid components.
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Fig. 9. Gallery of shot models (part 2).
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Fig. 10. ROC curve (true positive rate vs. false positive rate) for the matching test consisting of 754 model-to-model

comparisons.

to drastic perspective effects in the video. Several features have been matched incorrectly, some

of which can be seen in the right part of the figure. Overall, these four examples provide a

good illustration of the multiple challenges and sources ofdifficulty inherent in the modeling

and matching processes.

V. D ISCUSSION

This article has presented a new approach to video modeling with an application to shot

matching. We have demonstrated an implemented system consisting of multiple components,

including a representation of 3D objects in terms of small planar patches tangent to their

surfaces, an algorithm for simultaneously segmenting tracked features and constructing 3D

models of rigid components, and a method for matching such models using both geometry and

appearance. Each component of our implementation has been carefully designed to cope with

difficult real-world imaging conditions, and to achieve a proper balance between the conflicting

requirements of robustness to outliers and invariance to significant changes in surface appearance.

The experiments presented in this paper, particularly the ones using the filmsRun Lola Runand

Groundhog Day, show the promise of our method to support video indexing andretrieval. It

is important to emphasize that commercial films are particularly challenging for SFM methods,

since their shots frequently have very little camera motion, or camera motion that is nearly
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(a) Repeat Rate = 0.13

(b) Repeat Rate = 0.32

(c) Repeat Rate = 0.52

(d) Repeat Rate = 0.19

Fig. 11. Four correctly matched shots. Left: original frame of the test shot. Middle: the query model reprojected

into the test video. Right: the query model matched to the test model. For ease of visualization, the figure includes

black lines connecting several corresponding patches, also identified by distinct markers.

degenerate. Empirical observation suggests that in such cases the structure of the shot models

output by our system degenerates to planarity, but since information about local appearance is

preserved in our patch-based representation, the resulting models can still be matched using

the techniques of Section IV. Significant perspective effects, such as foreshortening, are also

frequently present in film shots, but these can be handled successfully using our novel locally

affine projection model.

Let us close by sketching several directions for improvement of the current method. First of
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all, the feature extraction and tracking system could be made more robust by including several

complementary methods for generating affine-covariant patches. Our present implementation

depends in large part on corner-like Harris-affine interestpoints [35], which often fall across

object boundaries, and therefore cannot be tracked stably.The Hessian regions it uses are less

likely to fall on edges. However, our system would benefit from the inclusion, for instance, of

maximally stable extremal regions [33], which are generally detected on relatively “flat” regions

of an object’s surface. Furthermore, some 3D objects are notamenable to representation by planar

patches, for example, lamp posts or wires of a suspension bridge. In such cases, a hybrid system

that models point, edge, and planar features would be more suitable. To improve computational

efficiency, our proposed modeling and recognition techniques can be easily integrated with

modern indexing schemes, such as locality sensitive hashing [20] and inverted file structures

for document retrieval [51]. Finally, many interesting objects are non-rigid, the prime example

being human actors. Thus, an important future research direction is extending our approach to

deal with non-rigid, articulated objects.

APPENDIX: FINDING DENSE BLOCKS

The incremental bilinear refinement algorithm (Section III-D) requires the factorization of one

large dense subset of the patch-view matrix in order to initialize the SFM estimation procedure.

The general problem of finding dense blocks in a matrix is equivalent to finding maximal cliques

in a graph, and is therefore NP-hard. However, since tracks are contiguous, the patch-view matrix

is equivalent to aninterval graph, for which this problem admits a simpler solution [21]. An

interval graph is one in which each vertex represents a contiguous range (such as intervals on

the real line) and each edge represents an overlap between two ranges. In our case, each vertex

corresponds to the unbroken sequence of views in which a surface patch appears, and each

edge corresponds to the sequence of views where two given surface patches are both visible.

A clique (that is, a fully connected subset of the vertices) in the graph is equivalent to a dense

block. Maximal cliques in interval graphs can be found in polylogarithmic time, rather than

NP time as required for the general case [21]. Algorithm 4, inspired by [21], enumerates all

the maximal cliques/blocks with at leastNV views. After choosing the largest dense block, we

factorize it. The resulting model provides a starting pointfor incremental bilinear refinement,

which gradually adds all the other tracks to the model.
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Input:

• For each track, the indices of the first and last views in whichit appears.

• A lower limit NV on the number of views in a block,NV ≥ 2.

• A lower limit NP on the number of tracks in a block,NP ≥ 2.

Output: A set of dense blocks (each represented as a list of views and tracks at whose intersection

the data is all present).

• Shorten each track byNV − 1. That is, for each tracked patch, subtractNV − 1 from the

index of its last view. Only retain tracks with positive length.

for all views Vi where some track starts (in increasing order)do

for all views Vj where some track ends,j ≥ i do

Let B be the set of tracks that appear in both viewsVi andVj.

if at least one track inB starts atVi and at least one track inB ends atVj then

Create a block consisting of tracks inB and views fromVi to Vj inclusive.

end if

end for

end for

• Lengthen each block byNV − 1 views.

Algorithm 4: Contiguous Blocks.
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