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Abstract

This paper addresses the problem of learning similarity-
preserving binary codes for efficient retrieval in large-scale
image collections. We propose a simple and efficient alter-
nating minimization scheme for finding a rotation of zero-
centered data so as to minimize the quantization error of
mapping this data to the vertices of a zero-centered bi-
nary hypercube. This method, dubbed iterative quantiza-
tion (ITQ), has connections to multi-class spectral cluster-
ing and to the orthogonal Procrustes problem, and it can be
used both with unsupervised data embeddings such as PCA
and supervised embeddings such as canonical correlation
analysis (CCA). Our experiments show that the resulting
binary coding schemes decisively outperform several other
state-of-the-art methods.

1. Introduction
Recently, the vision community has devoted a lot of

attention to the problem of learning similarity-preserving
binary codes for representing large-scale image collec-
tions [12, 16, 18, 19, 20, 21]. Encoding high-dimensional
image descriptors as compact binary strings can enable
large efficiency gains in storage and computation speed
for similarity search, and it can be accomplished with
much simpler data structures and algorithms than alterna-
tive large-scale indexing methods [3, 7, 9, 10].

As discussed in [21], an effective scheme for learning bi-
nary codes should have several properties. First, the codes
should be short so that we could store large amount of im-
ages in memory. For example, for an ordinary workstation
with 16G memory, to store 250 million images in memory,
we could only use about 64 bits for each image. Second, the
codes should map images that are similar (either perceptu-
ally or semantically) to binary strings with a low Hamming
distance. Finally, the algorithms for learning the parame-
ters of the binary code and for encoding a new test image
should be very efficient. The need to simultaneously satisfy
all three constraints makes the binary code learning problem
quite challenging.

Torralba et al. [18] have introduced the binary cod-
ing problem to the vision community and compared sev-
eral methods based on boosting, restricted Boltzmann ma-
chines [14], and locality sensitive hashing (LSH) [1]. To
further improve the performance and scalability, Weiss et al.
have proposed Spectral Hashing (SH) [21], a method moti-
vated by spectral graph partitioning. Raginsky and Lazeb-
nik [12] have proposed a distribution-free method based
on the random features mapping for shift-invariant ker-
nels [13]. This method has theoretical convergence guaran-
tees and has demonstrated superior performance to spectral
hashing for relatively large code sizes (64 bits and above).
Wang et al. [19] have proposed a semi-supervised hashing
method (SSH) that incorporates pairwise semantic similar-
ity and dissimilarity constraints from labeled data.

A common initial step in many binary coding methods
is to perform principal component analysis (PCA) to re-
duce the dimensionality of the data. However, since the
variance of the data in each PCA direction is different – in
particular, higher-variance directions carry much more in-
formation – encoding each direction with the same number
of bits is bound to produce poor performance. To address
this problem, SH [21] uses a separable Laplacian eigenfunc-
tion formulation that ends up assigning more bits to direc-
tions along which the data has a greater range. However,
this approach is somewhat heuristic and relies on an unre-
alistic assumption that the data is uniformly distributed in a
high-dimensional rectangle. SSH [19] relaxes the orthogo-
nality constraints of PCA to allow successive projections to
capture more of the data variance. While this approach pro-
duces promising results, the optimization problem requires
careful regularization to avoid degenerate solutions.

In this paper, we start with PCA-projected data and for-
mulate the problem of learning a good binary code in terms
of directly minimizing the quantization error of mapping
this data to vertices of the binary hypercube. First, we show
that simply applying a random orthogonal transformation
to the PCA-projected data, as suggested by Jégou et al. [7],
already does a very good job of balancing the variance of
different PCA directions and outperforms both SH [21] and
non-orthogonal relaxation [19]. Next, we propose an al-
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Figure 1. Toy illustration of the proposed ITQ method (see Section
2 for details). The basic binary encoding scheme is to quantize
each data point to the closest vertex of the binary cube, (±1,±1)
(this is equivalent to quantizing points according to their quad-
rant). (a) The x and y axes correspond to the PCA directions of
the data. Note that quantization assigns points in the same cluster
to different vertices. (b) Randomly rotated data – the variance is
more balanced and the quantization error is lower. (c) Optimized
rotation found by ITQ – quantization error is lowest, and the par-
titioning respects the cluster structure.

ternating minimization approach for refining the initial or-
thogonal transformation to reduce quantization error. This
approach, dubbed iterative quantization (ITQ) has con-
nections to the orthogonal Procrustes problem [15] and to
eigenvector discretization for multi-class spectral partition-
ing [22], and in our experiments it outperforms the methods
of [12, 19, 21]. Moreover, ITQ can be coupled not only with
PCA, but with any projection onto an orthogonal basis. In
particular, we show how to combine ITQ with canonical
correlation analysis (CCA) to incorporate information from
clean or noisy class labels in order to improve the semantic
consistency of the code.

The rest of this paper is organized as follows. The ITQ
method is described in Section 2. The experimental evalu-
ation presented in Section 3 shows results for the unsuper-
vised scenario, where ITQ is applied to PCA-projected data.
Section 4 describes the supervised version of our method
based on CCA.

2. Unsupervised Code Learning
In this section, we address the problem of learning bi-

nary codes without any supervisory information in the form
of class labels. We first apply linear dimensionality reduc-
tion to the data, and then perform binary quantization in the
resulting space. For the first step, discussed in Section 2.1,
we follow the maximum variance formulation of [19, 21],
which yields PCA projections. The major novelty of our
method is in the second step (Section 2.2), where we try to
preserve the locality structure of the projected data by ro-
tating it so as to minimize the discretization error. Figure 1
illustrates the idea behind our method.

Let us first introduce our notation. We have a set of n
data points {x1,x2, . . . ,xn}, xi ∈ Rd, that form the rows

of the data matrix X ∈ Rn×d. We assume that the points
are zero-centered, i.e.,

∑n
i=1 xi = 0. Our goal is to learn

a binary code matrix B ∈ {−1, 1}n×c, where c denotes the
code length.1 For each bit k = 1, . . . , c, the binary encoding
function is defined by hk(x) = sgn(xwk), where wk is a
column vector of hyperplane coefficients and sgn(v) = 1 if
v ≥ 0 and 0 otherwise. For a matrix or a vector, sgn(·) will
denote the result of element-wise application of the above
function. Thus, we can write the entire encoding process
as B = sgn(XW ), where W ∈ Rd×c is the matrix with
columns wk.

2.1. Dimensionality Reduction

Following the formulation of [19, 21], we want to pro-
duce an efficient code in which the variance of each bit is
maximized and the bits are pairwise uncorrelated. We can
do this by maximizing the following objective function:

I(W ) =
∑

k

var(hk(x)) =
∑

k

var(sgn(xwk)) ,

1
n
BTB = I .

As shown in [19], the variance is maximized by encod-
ing functions that produce exactly balanced bits, i.e., when
hk(x) = 1 for exactly half of the data points and−1 for the
other half. However, the requirement of exact balancedness
makes the above objective function intractable. Adopting
the same signed magnitude relaxation as in [19], we get the
following continuous objective function:

Ĩ(W ) =
∑

k

E(‖xwk‖22) =
1
n

∑
k

wT
kX

TXwk

=
1
n

tr(WTXTXW ) , WTW = I . (1)

The constraintWTW = I requires the hashing hyperplanes
to be orthogonal to each other, which is a relaxed version
of the requirement that code bits be pairwise decorrelated.
This objective function is exactly the same as that of Prin-
cipal Component Analysis (PCA). For a code of c bits, we
obtain W by taking the top c eigenvectors of the data co-
variance matrix XTX .

2.2. Binary Quantization

Let v ∈ Rc be a vector in the projected space. It is easy
to show (see below) that sgn(v) is the vertex of the hyper-
cube {−1, 1}c closest to v in terms of Euclidean distance.
The smaller the quantization loss ‖ sgn(v)−v‖2, the better
the resulting binary code will preserve the original locality
structure of the data. Now, going back to eq. (1), it is clear

1In our formulation, the entries of B take on values {−1, 1} instead
of {0, 1} because the proposed quantization-based scheme of Section 2.2
requires both the data and the binary cube to be zero-centered.
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that if W is an optimal solution, then so is W̃ = WR for
any orthogonal c× c matrix R. Therefore, we are free to or-
thogonally transform the projected data V = XW in such
a way as to minimize the quantization loss

Q(B,R) = ‖B − V R‖2F , (2)

where ‖ · ‖F denotes the Frobenius norm.
The idea of rotating the data to minimize quantization

loss can be found in Jégou et al. [7]. However, the approach
of [7] is based not on binary codes, but on product quanti-
zation with asymmetric distance computation (ADC). Un-
like in our formulation, direct minimization of quantization
loss for ADC is impractical, so Jégou et al. instead sug-
gest solving an easier problem, that of finding a rotation
(or, more precisely, an orthogonal transformation) to bal-
ance the variance of the different dimensions of the data.
In practice, they find that a random rotation works well for
this purpose. Based on this observation, a natural baseline
for our method is given by initializing R to a random or-
thogonal matrix.

Beginning with the random initialization of R, we adopt
a k-means-like iterative quantization (ITQ) procedure to
find a local minimum of the quantization loss (2). In each it-
eration, each data point is first assigned to the nearest vertex
of the binary hypercube, and then R is updated to minimize
the quantization loss given this assignment. These two al-
ternating steps are described in detail below.
Fix R and update B. Expanding (2), we have

Q(B,R) = ‖B‖2F + ‖V ‖2F − 2 tr(BRTV T )
= nc+ ‖V ‖2F − 2 tr(BRTV T ) . (3)

Because the projected data matrix V = XW is fixed, mini-
mizing (3) is equivalent to maximizing

tr(BRTV T ) =
n∑

i=1

c∑
j=1

Bij Ṽij ,

where Ṽij denote the elements of Ṽ = V R. To maximize
this expression with respect to B, we need to have Bij = 1
whenever Ṽij ≥ 0 and −1 otherwise. In other words, B =
sgn(V R) as claimed in the beginning of this section.

Note that scaling the original data X by a constant fac-
tor changes the additive and multiplicative constants in (3),
but does not affect the optimal value ofB orR. Thus, while
our method requires the data to be zero-centered, it does not
care at all about the scaling. In other words, the quantiza-
tion formulation (2) makes sense regardless of whether the
average magnitude of the feature vectors is compatible with
the radius of the binary cube.
Fix B and update R. For a fixed B, the objective function
(2) corresponds to the classic Orthogonal Procrustes prob-
lem [15], in which one tries to find a rotation to align one
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Figure 2. (a) Quantization error for learning a 32-bit ITQ code on
the CIFAR dataset (see Section 3.1). (b) Running time for learning
different 32-bit encodings on the Tiny Images dataset. The timings
were obtained on a workstation with a 2-core Xeon 3.33GHZ CPU
and 32G memory.

point set with another. In our case, the two point sets are
given by the projected data V and the target binary code
matrix B. For a fixed B, (2) is minimized as follows: first
compute the SVD of the c × c matrix BTV as SΩŜT and
then let R = ŜST .

We alternate between updates toB andR for several iter-
ations to find a locally optimal solution. The typical behav-
ior of the error (2) is shown in Figure 2(a). In practice, we
have found that we do not need to iterate until convergence
to achieve good performance, and we use 50 iterations for
all experiments. Figure 2(b) shows the training time for 32-
bit codes for our method and several competing methods
that are evaluated in the next section. All the methods scale
linearly with the number of images. Although our method
is somewhat slower than others, it is still very fast and prac-
tical in absolute terms.

Note that the ITQ algorithm has been inspired by the ap-
proach of Yu and Shi [22] for discretizing relaxed solutions
to multi-class spectral clustering, which is based on finding
an orthogonal transformation of the continuous eigenvec-
tors to bring them as close as possible to a discrete solution.
One important difference between [22] and our approach is
that [22] allows discretization only to the c orthogonal hy-
percube vertices with exactly one positive entry, while we
use all the 2c vertices as targets. This enables us to learn ef-
ficient codes that preserve the locality structure of the data.

3. Evaluation of Unsupervised Code Learning

3.1. Datasets

We evaluate our method on two subsets of the Tiny Im-
ages dataset [17]. Both of these subsets come from [4]. The
first subset is a version of the CIFAR dataset [8], and it con-
sists of 64,800 images that have been manually grouped into
11 ground-truth classes (airplane, automobile, bird, boat,
cat, deer, dog, frog, horse, ship and truck). The second,
larger subset consists of 580,000 Tiny Images. Apart from
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(a) Euclidean ground truth (b) Class label ground truth
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Figure 3. Comparative evaluation on CIFAR dataset. (a) Performance is measured by mean average precision (mAP) for retrieval using top
50 Euclidean neighbors of each query point as true positives. Refer to Figure 4 for the complete recall-precision curves for the state-of-the-
art methods. (b) Performance is measured by the averaged precision of top p ranked images for each query where ground truth is defined
by semantic class labels. Refer to Figure 5 for the complete class label precision curves for the state-of-the-art methods.

the CIFAR images, which are included among the 580,000
images, all the other images lack manually supplied ground
truth labels, but they come associated with one of 388 In-
ternet search keywords. In this section, we use the CIFAR
ground-truth labels to evaluate the semantic consistency of
our codes, and in Section 4, we will use the “noisy” key-
word information associated with the remaining Tiny Im-
ages to train a supervised linear embedding.

The original Tiny Images are 32 × 32 pixels. We repre-
sent them with grayscale GIST descriptors [11] computed
at 8 orientations and 4 different scales, resulting in 320-
dimensional feature vectors. Because our method (as well
as many other state-of-the-art methods) cannot use more
bits than the original dimension of the data, we limit our-
selves to evaluating code sizes up to 256 bits.

3.2. Protocols and Baseline Methods

We follow two evaluation protocols widely used in re-
cent papers [12, 19, 21]. The first one is to evaluate perfor-
mance of nearest neighbor search using Euclidean neigh-
bors as ground truth. As in [12], a nominal threshold of the
average distance to the 50th nearest neighbor is used to de-
termine whether a database point returned for a given query
is considered a true positive. Then, based on the Euclidean
ground truth, we compute the recall-precision curve and the
mean average precision (mAP), or the area under the re-
call precision curve. Second, we evaluate the semantic con-
sistency of codes produced by different methods by using
class labels as ground truth. For this case, we report the av-
eraged precision of top 500 ranked images for each query
as in [20]. For all experiments, we randomly select 1000
points to serve as test queries. The remaining images form
the training set on which the code parameters are learned,
as well as the database against which the queries are per-
formed. All the experiments reported in this paper are aver-
aged over 5 random training/test partitions.

We compare our ITQ method to three baseline methods

that follow the basic hashing scheme H(X) = sgn(XW̃ ),
where the projection matrix W̃ is defined in different ways:

1. LSH: W̃ is a Gaussian random matrix [1]. Note that in
theory, this scheme has locality preserving guarantees
only for unit-norm vectors. While we do not normalize
our data to unit norm, we have found that it still works
well as long as the data is zero centered.

2. PCA-Direct: W̃ is simply the matrix of top c PCA di-
rections. This baseline is included to show what hap-
pens when we do not rotate the PCA-projected data
prior to quantization.

3. PCA-RR: W̃ = WR, where W is the matrix of PCA
directions and R is a random orthogonal matrix. This
is the initialization of ITQ, as described in Section 2.2.

We also compare ITQ to three state-of-the-art methods us-
ing code provided by the authors:

1. SH [21]: Spectral Hashing. This method is based
on quantizing the values of analytical eigenfunctions
computed along PCA directions of the data.

2. SKLSH [12]: This method is based on the random fea-
tures mapping for approximating shift-invariant ker-
nels [13]. In [12], this method is reported to outper-
form SH for code sizes larger than 64 bits. We use a
Gaussian kernel with bandwidth set to the average dis-
tance to the 50th nearest neighbor as in [12].

3. PCA-Nonorth [19]: Non-orthogonal relaxation of
PCA. This method is reported in [19] to outperform
SH. Note that instead of using semi-supervised PCA as
in [19], the evaluation of this section uses standard un-
supervised PCA (a supervised embedding will be used
in Section 4).

Note that of all the six methods above, LSH and SKLSH are
the only ones that rely on randomized data-independent lin-
ear projections. All the other methods, including our PCA-
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(a) Recall precision curve@32 bits.
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(b) Recall precision curve@64 bits.
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(c) Recall precision curve@128 bits.
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(d) Recall precision curve@256 bits.

Figure 4. Comparison with state-of-the-art methods on CIFAR dataset using Euclidean neighbors as ground truth. Refer to Figure 3(a) for
a summary of the mean average precision of these curves as a function of code size.
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(a) Class label precision@32 bits.
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(b) Class label precision@64 bits.
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(c) Class label precision@128 bits.
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(d) Class label precision@256 bits.

Figure 5. Comparison with state-of-the-art methods on CIFAR dataset using semantic labels as ground truth. Figure 3(b) shows the
summary plot of average precision as a function of code size.

RR and PCA-ITQ, use PCA (or a non-orthogonal relaxation
of PCA) as an intermediate dimensionality reduction step.

3.3. Results on CIFAR Dataset

Figure 3(a) compares all the methods based on their
mean average precision for Euclidean neighbor ground
truth. Perhaps surprisingly, the natural baseline for our
method, PCA-RR, already outperforms everything except
PCA-ITQ for most code sizes. The only exception is
SKLSH, which has a strongly upward trajectory and gets
the best performance for a code size of 256. This be-
havior may be due to the theoretical convergence guaran-
tee of SKLSH that when enough bits are assigned, Ham-
ming distance between binary codes approximates distance
in the kernel space with high quality. LSH, which is data-
independent just like SKLSH, also improves as the code
size increases, and it almost reaches the performance level
of PCA-RR at 256 bits. As for our proposed PCA-ITQ
method, it consistently performs better than PCA-RR, al-
though the advantage becomes smaller as the code size in-
creases. Thus, adapting to the data distribution seems espe-
cially important when the code size is small. In particular,
doing the ITQ refinement for a 64-bit code raises its perfor-
mance almost to the level of the 256-bit PCA-RR code.

Figure 3(b) evaluates the semantic consistency of the
codes using class labels as ground truth. For each method,
it shows retrieval precision for top 500 returned images as

a function of code size. It also shows the “upper bound”
for the performance of any method, which is given by the
retrieval precision of the original uncompressed GIST fea-
tures with Euclidean distance. As in Figure 3(a), PCA-RR
and PCA-ITQ outperform all the other methods, and PCA-
ITQ has a small but consistent advantage over PCA-RR. By
256 bits, the precision of PCA-ITQ approaches that of the
uncompressed upper bound.

From Figure 3(b), we can also make some interesting ob-
servations about the performance of the other methods. Un-
like in Figure 3(a), PCA-Direct works relatively well for the
smallest code sizes (32 and 64 bits), while SKLSH works
surprisingly poorly. This may be due to the fact that un-
like most of the other methods, SKLSH does not rely on
PCA. Our results seem to indicate that PCA really helps to
preserve semantic consistency for the smallest code sizes.
Even at 256 bits, while SKLSH had by far the best perfor-
mance for Euclidean neighbor retrieval, it lags behind most
of the other methods in terms of class label precision. This
underscores the fact that the best Euclidean neighbors are
not necessarily the most semantically consistent, and that it
is important to apply dimensionality reduction to the data
in order to capture the its class structure. Another observa-
tion worth making is that the two methods lacking a solid
theoretical basis, namely PCA-Direct and SH, can actually
decrease in performance as the number of bits increases.

Figures 4 and 5 show complete recall-precision and class
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(a) Recall precision curve@32 bits.
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(b) Recall precision curve@64 bits.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re

ci
si

on

 

 

PCA−ITQ
PCA−RR
PCA−Nonorth
SKLSH
SH

(c) Recall precision curve@256 bits.
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(d) mAP for different bits code.

Figure 6. Results on the 580,000 Tiny Image subset. Ground truth is defined by Euclidean neighbors.

label precision curves corresponding to the summary num-
bers in Figures 3(a,b). To avoid clutter, these curves (and
all the subsequent results reported in this paper) omit the
two baseline methods LSH and PCA-Direct. The com-
plete curves confirm the trends seen in Figures 3 (a,b). One
thing that becomes especially apparent from looking at Fig-
ure 4(d) is that the data-dependent methods (PCA-Nonorth,
PCA-RR, PCA-ITQ) seem to hit a ceiling of performance
as code size increases, while the data-independent SKLSH
method does not have a similar limitation (in fact, in the
limit of infinitely many bits, SKLSH is guaranteed to yield
exact Euclidean neighbors). Once again, the message seems
to be that adapting binary codes to the data can give the
biggest gain for small code sizes.

3.4. Results on 580,000 Tiny Images

Figure 6 shows precision-recall curves and mAP for Eu-
clidean neighbor retrieval on the 580,000 Tiny Images. As
explained in Section 3.1, there are no ground truth class
labels for this dataset, so we cannot evaluate class label
precision. The relative ordering of the different methods
is largely consistent with results on CIFAR, with PCA-ITQ
getting an even bigger performance advantage at small code
sizes. Moreover, comparing Figure 6(d) with Figure 3(a),
we can see that at 256 bits, SKLSH, PCA-Nonorth, PCA-
RR, and PCA-ITQ converge to a higher level of mAP per-
formance than on the smaller CIFAR dataset. This may be
because the larger dataset samples the feature space more
densely, making it easier to find good image matches.

To fully realize the potential of binary codes for large-
scale datasets, we would like to be able to use them for hash-
ing or indexing as opposed to exhaustive search. For this,
we would need a very small code (32 bits or less) to yield
reasonably high precision and recall among retrieved points
that lie within a Hamming distance of 0 to 2 from the query.
However, even the existing methods that have the best local-
ity preserving properties suffer from very low recall at a low
Hamming radius. Table 1 shows the recall and precision of
32-bit codes at Hamming radii 0, 1, and 2 for several meth-
ods. We can see that for PCA-ITQ, exact matches already
have over 9% recall and over 94% precision – much better

r = 0 r = 1 r = 2

PCA-ITQ Recall (%) 9.31 18.43 27.82
Precision (%) 94.29 88.65 80.62

PCA-RR Recall (%) 0.10 0.68 2.54
Precision (%) 95.65 91.00 84.95

PCA-Nonorth Recall (%) 0.92 5.09 14.99
Precision (%) 67.30 54.01 42.24

SKLSH Recall (%) 0.16 1.10 4.26
Precision (%) 65.56 50.38 36.97

SH Recall (%) 0.07 0.64 3.01
Precision (%) 35.35 24.40 16.84

Table 1. Recall and precision for small Hamming radius r (32 bits).

than any of the other methods, including PCA-RR. This is
very significant, as it shows that Procrustean adaptation to
the data distribution is very effective in bringing close Eu-
clidean neighbors within a small Hamming distance of each
other, making the resulting codes usable for hashing.

4. Leveraging Label Information

As discussed earlier, RR and ITQ can be used with any
orthogonal basis projection method. In particular, if we
have a training dataset with label information available, we
can choose a supervised dimensionality reduction method
to better capture the semantic structure of the dataset. In this
section, we show how to refine our codes in a supervised
setting using Canonical Correlation Analysis (CCA) [6],
which has proven to be an effective tool for extracting a
common latent space from two views [5] and is robust to
noise [2]. While the idea of using CCA to perform super-
vised linear dimensionality reduction prior to binary coding
is very simple, to our knowledge, it has not yet been tested
in the literature.

We assume that each training image descriptor xi ∈ Rd

has associated with it a label vector yi ∈ {0, 1}t, where t
is the total number of labels (search keywords, tags) avail-
able, and a given entry of yi is 1 if the image is associated
with the corresponding label and 0 otherwise. Note that
the labels do not have to be mutually exclusive and may
be noisy. The label vectors form the rows of a label matrix
Y ∈ {0, 1}n×t. The goal of CCA is to find projection direc-
tions wk and uk for feature and label vectors to maximize
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Figure 7. Average precision for top 500 retrieved images for su-
pervised data embeddings based on clean and noisy labels. CCA
(clean) and CCA (noisy) are reference curves for uncompressed
CCA-projected data.

the correlation between the projected data Xwk and Y uk:

C(wk,uk) =
wT

kX
TY uk√

wT
kX

TXwk uT
k Y

TY uk

s.t. wT
kX

TXwk = 1, uT
k Y

TY uk = 1 .

Maximizing the above objective function involves solving
the following generalized eigenvalue problem to get wk:

XTY (Y TY + ρI)−1Y TXwk = λ2
k(XTX + ρI)wk , (4)

in which ρ is a small regularization constant used to prevent
a trivial solution [5]. We set ρ to be 0.0001 in this paper.
The leading generalized eigenvectors of (4) then give us a
sequence of orthogonal wk directions that span the solu-
tion space, just as in the case of PCA. Note that once we
have wk, we can also solve for the corresponding uk, but
in our case, we only care about the projection directions in
the data space, since we assume that label information will
be unavailable at test time.

For a c-bit code, we form a projection matrix Ŵ ∈ Rd×c

whose columns are given by the leading eigenvectors wk

scaled by their eigenvalues λk.2 Then we obtain the embed-
ded dataset V = XŴ in the new latent space that preserves
both visual and semantic similarity. Finally, we use the RR
and ITQ methods from Section 2.2 to rotate the data to min-
imize quantization error as before. We refer to the resulting
methods as CCA-RR and CCA-ITQ, respectively.

Recall from Section 3.1 that the CIFAR dataset comes
with manually verified keywords, while the 580,000 Tiny

2We have found that scaling eigenvectors by their eigenvalues always
improves performance for CCA; however, this is not true for PCA.

Images subset comes with noisy keywords that have not
been verified by humans. These two different kinds of an-
notation allow us to explore the power of the CCA embed-
ding given both “clean” and “noisy” supervisory informa-
tion. For the “clean” scenario, we use a setup analogous to
that of Section 3.3: namely, we set aside 1000 query im-
ages from the CIFAR dataset and use the remaining CIFAR
images as the training set and the database against which
the queries are run. The labels in the training set are used
to train the CCA embedding as described above. For the
query images, the class labels are used only for benchmark-
ing. For the “noisy” scenario, we learn the CCA embedding
from all the Tiny Images that are disjoint from the CIFAR
dataset using their unverified search keywords as the super-
visory information. Then we apply the resulting embedding
to the CIFAR dataset, split it into query images and refer-
ence database as in the clean scenario, and use the “clean”
ground-truth labels for benchmarking.

We compare the above approach to the semi-supervised
approach of [19], in which the label information of the n
data points is used to construct an n×n matrix S that mod-
ulates the data covariance matrix. We set Sij = 1 if two data
points xi and xj have the same label, and 0 otherwise. Then
we find the projection matrix W by taking the eigendecom-
position of XTSX . Note that [19], which assumes that few
labeled images are available, regularizes XTSX by adding
to it a small multiple of the covariance matrix XTX . In our
case, we have found this regularization to be unnecessary.
We then take the data-dependent embedding W and per-
form ITQ refinement. We call the resulting method SSH-
ITQ. Note that in [19], the semi-supervised embedding is
combined with nonorthogonal relaxation (SSH-Nonorth),
however, just as in Section 3, we have found that SSH-ITQ
works better than SSH-Nonorth, so we only reproduce the
SSH-ITQ results here.

Figure 7 shows the averaged precision at top 500 re-
trieved images for the “clean” and “noisy” versions of the
CCA and SSH embeddings. As a baseline, we also include
the performance of the unsupervised PCA-ITQ embedding.
We can see that CCA-ITQ with clean labels achieves the
highest performance, while CCA-ITQ with noisy labels still
gives a big improvement over the unsupervised PCA-ITQ.
On the other hand, SSH produces a very small improvement
over PCA, and there is almost no difference in the power of
the SSH embeddings learned from clean and noisy data. For
reference, this figure also shows retrieval precision curves
for uncompressed CCA-projected data for both “clean” and
“noisy” supervisory information. Interestingly, after 32 bits,
the ITQ-compressed data actually begins to give better re-
trieval performance than the uncompressed data! It seems
that binarization in this case may actually be accomplishing
some sort of “semantic hashing” [14], bringing images from
the same class to the same hypercube vertex. In the future,
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Figure 8. Sample top retrieved images for query in (a) using 32 bits. Red rectangle denotes false positive. Best viewed in color.

we plan to investigate this phenomenon in more detail.
Finally, Figure 8 shows the results of our methods on a

sample query. We can clearly see that when labels are incor-
porated, the results are much more semantically consistent.

5. Discussion

This paper makes several useful findings. First, we
show that the performance of PCA-based binary coding
schemes can be greatly improved by simply rotating the
projected data. Even a random rotation already works bet-
ter than more elaborate schemes like non-orthogonal relax-
ation [19]. Second, we demonstrate an iterative quantiza-
tion method for refining this rotation that is very natural
and effective. We evaluate the performance of our method
both in terms of preserving Euclidean neighbors in the fea-
ture space and in terms of retrieving semantically similar
images. This evaluation reveals that methods that do very
well on the first task, like SKLSH, can actually do quite
poorly on the second one. We also show that the classic
CCA method [6] gives a good way of utilizing both clean
and noisy label information for improving semantic preci-
sion. The code and data will be made available online.3

At present, one limitation of our method is that it uses
one bit per projected data dimension. Unlike randomized
data-independent methods such as SKLSH, it cannot use
more bits than data dimensions, and converge to the perfor-
mance of the uncompressed data when enough bits are used.
In the future, we would like to bridge the gap between data-
dependent methods like ours and data-independent methods
like SKLSH to get the best possible performance both for
for very small and very large code sizes.
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